
CSS Mastery
Advanced Web

Standards Solutions

Andy Budd
with Cameron Moll
and Simon Collison

6145_Ch00 1/11/06 5:47 PM Page i

CSS Mastery:
Advanced Web Standards Solutions

Copyright © 2006 by Andy Budd, Cameron Moll, and Simon Collison

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system,

without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-614-2
ISBN-10 (pbk): 1-59059-614-5

Printed and bound in the United States of America 19 18 17 16 15 14 13 12 11

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner,

with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505,

e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in
the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to

any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Product numbers for the images used in Tuscany Luxury Resorts are as follows:
FAN1003579, FAN1003613, FAN1006983, and DVP0703035.

Credits

Lead Editor
Chris Mills

Technical Reviewer
Molly Holzschlag

Editorial Board
Steve Anglin

Dan Appleman
Ewan Buckingham

Gary Cornell
Jason Gilmore

Jonathan Hassell
Chris Mills

Dominic Shakeshaft
Jim Sumser

Project Manager
Denise Santoro Lincoln

Copy Edit Manager
Nicole LeClerc

Copy Editor
Liz Welch

Assistant Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor and Artist
Diana Van Winkle, Van Winkle Design

Proofreader
April Eddy

Indexer
John Collin

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

6145_Ch00_11P.qxd 9/19/07 12:07 PM Page ii

To my beautiful girlfriend Melanie,
for all your love and support over the last 9 months.

—Andy Budd

To Mam, Dad, Emma, Agenzia—
thank you for your support.

—Simon Collison

To Suzanne and the boys—
I wouldn't be the same without you.

—Cameron Moll

6145_Ch00_3P 3/29/06 4:18 PM Page iii

CONTENTS AT A GLANCE

Foreword . xiii
About the Authors . xv
About the Technical Reviewer . xvii
Acknowledgments . xix
Introduction . xxi

Chapter 1: Setting the Foundations . 1

Chapter 2: Visual Formatting Model Recap 27

Chapter 3: Background Images and Image Replacement 43

Chapter 4: Styling Links . 69

Chapter 5: Styling Lists and Creating Nav Bars 85

Chapter 6: Styling Forms and Data Tables 111

Chapter 7: Layout . 133

Chapter 8: Hacks and Filters . 153

Chapter 9: Bugs and Bug Fixing . 167

Case Study 1: More Than Doodles . 185

Case Study 2: Tuscany Luxury Resorts . 217

Index . 245

6145_Ch00 1/11/06 5:47 PM Page v

CONTENTS

Foreword . xiii
About the Authors . xv
About the Technical Reviewer . xvii
Acknowledgments . xix
Introduction . xxi

Chapter 1: Setting the Foundations . 1

Structuring your code . 2
Use meaningful markup . 3

IDs and class names . 5
Divs and spans . 7

Document types, DOCTYPE switching, and browser modes 8
Validation . 9

Browser modes . 10
DOCTYPE switching . 10

Getting your styles to hit the target . 11
Common selectors . 11

Pseudo-classes . 12
The universal selector . 13
Advanced selectors . 13

Child and adjacent sibling selectors . 14
Attribute selectors . 14

The cascade and specificity . 16
Specificity . 16
Using specificity in your stylesheets . 17
Adding a class or an ID to the body tag . 18

Inheritance . 18
Planning, organizing, and maintaining your stylesheets . 19

Applying styles to your document . 19
Commenting your code . 21

Adding structural comments . 21
Note to self . 22
Removing comments and optimizing your stylesheets 23

Style guides . 23
Organizing your stylesheets for easy maintenance . 24

Summary . 25

6145_Ch00 1/11/06 5:47 PM Page vii

Chapter 2: Visual Formatting Model Recap 27

Box model recap . 28
IE/Win and the box model . 30
Margin collapsing . 31

Positioning recap . 33
The visual formatting model . 33
Relative positioning . 34
Absolute positioning . 35

Fixed positioning . 36
Floating . 37

Line boxes and clearing . 38
Summary . 42

Chapter 3: Background Images and Image Replacement 43

Background image basics . 44
Rounded-corner boxes . 46

Fixed-width rounded-corner boxes . 47
Flexible rounded-corner box . 49

Mountaintop corners . 52
Drop shadows . 53

Easy CSS drop shadows . 54
Drop shadows a la Clagnut . 57
Fuzzy shadows . 57
Onion skinned drop shadows . 61

Image replacement . 63
Fahrner Image Replacement (FIR) . 64
Phark . 64
Gilder/Levin method . 65
Inman Flash Replacement (IFR) and Scalable Inman Flash Replacement (sIFR) 66

Summary . 67

Chapter 4: Styling Links . 69

Simple link styling . 70
Fun with underlines . 71

Fancy link underlines . 72
Highlighting different types of link . 73

Highlighting downloadable documents and feeds . 75
Creating buttons and rollovers . 76

Simple rollovers . 77
Rollovers with images . 78
Pixy-style rollovers . 78

Visited-link styles . 80
Pure CSS tooltips . 81
Summary . 83

CONTENTS

viii

6145_Ch00 1/11/06 5:47 PM Page viii

Chapter 5: Styling Lists and Creating Nav Bars 85

Basic list styling . 86
Creating a vertical nav bar . 87
Highlighting the current page in a nav bar . 90
Creating a horizontal nav bar . 91
Simplified “sliding doors” tabbed navigation . 93
CSS image maps . 96

flickr-style image maps . 99
Remote rollovers . 104
A short note about definition lists . 108
Summary . 109

Chapter 6: Styling Forms and Data Tables 111

Styling data tables . 112
Table-specific elements . 114

summary and caption . 114
thead, tbody, and tfoot . 114
col and colgroups . 115

Data table markup . 115
Styling the table . 116
Adding the visual style . 117
Added extras . 118

Simple form layout . 119
Useful form elements . 119

Form labels . 120
The basic layout . 120
Other elements . 122
Embellishments . 124

Required fields . 125
Complicated form layout . 125

Accessible date input . 126
Multicolumn check boxes . 128
Form feedback . 130

Summary . 132

Chapter 7: Layout . 133

Centering a design . 134
Centering a design using auto margins . 134
Centering a design using positioning and negative margins 136

Float-based layouts . 137
Two-column floated layout . 137
Three-column floated layout . 140

Fixed-width, liquid, and elastic layout . 141
Liquid layouts . 142
Elastic layouts . 144
Elastic-liquid hybrid . 146
Liquid and elastic images . 147

CONTENTS

ix

6145_Ch00 1/11/06 5:47 PM Page ix

Faux columns . 149
Summary . 152

Chapter 8: Hacks and Filters . 153

An introduction to hacks and filters . 154
A warning about hacks and filters . 154
Using hacks sensibly . 155

Filtering separate stylesheets . 156
Internet Explorer conditional comments . 157
Band pass filters . 158

Filtering individual rules and declarations . 160
The child selector hack . 160
Attribute selector hack . 160
The star HTML hack . 162
IE/Mac commented backslash hack . 162
The escaped property hack . 163
Tantek’s box model hack . 163
The modified simplified box model hack . 164
The !important and underscore hacks . 164
The Owen hack . 165

Summary . 166

Chapter 9: Bugs and Bug Fixing . 167

Bug hunting . 168
Common CSS problems . 168

Problems with specificity and sort order . 169
Problems with margin collapsing . 170

Bug hunting basics . 171
Isolate the problem . 173
Creating a minimal test case . 174
Fix the problem, not the symptoms . 174
Ask for help . 174

Having “layout” . 175
What is “layout”? . 175
What effect does layout have? . 176

Common bugs and their fixes . 177
Double-margin float bug . 178
Three-pixel text jog bug . 178
IE 6 duplicate character bug . 181
IE 6 peek-a-boo bug . 182
Absolute positioning in a relative container . 182
Stop picking on Internet Explorer . 183

Summary . 184

CONTENTS

x

6145_Ch00 1/11/06 5:47 PM Page x

Case Study 1: More Than Doodles . 185

About this case study . 186
Controlling content area with descendant selectors . 188

The XHTML . 188
A note about naming conventions . 189

Three-column layout . 189
Two-column layout . 190
One-column layout . 191
Removing unwanted columns . 192

Floating the columns . 193
The calculations . 194
Floating the columns in the right place . 195

Highlighting the current page based on the body class 196
Drop-in boxes for columns . 198
Right-angled or rounded corners—you decide . 199

Flat, right-angled corners . 199
So, let’s prepare for something special . 200

Transparent custom corners and borders . 201
The images . 202
The CSS . 202

Combining classes for targeted actions . 204
Image classes and exceptions . 206

Default images . 206
Owned images . 207
Larger images . 207

Dealing with links . 210
Understanding the sidebar links . 210
Checked-off visited links . 210

LAHV, not LVHA . 212
Highlighting external links . 213

Floated drop shadows (gallery) . 214
Casting the shadows . 214
Floating the images . 215

Summary . 216

Case Study 2: Tuscany Luxury Resorts . 217

About this case study . 218
The fluid layout . 219

Body and container . 221
Masthead . 221
Content and sidebar . 222

Fluid properties . 224
Footer . 225
Resolving fluid layout issues . 225

CONTENTS

xi

6145_Ch00 1/11/06 5:47 PM Page xi

Aligning elements using absolute positioning . 226
Location properties (top, bottom, left, right) . 227
Stacking order (z-index) . 229

Background image techniques . 230
Dividing the top in three . 231
“Bulletproofing” a background . 232

Image replacement . 234
Logo image replacement . 235
Initial cap image replacement . 236

Fluid imagery . 237
Coding a fluid image . 238

Using a single list item for multiple elements . 240
Coding the menu . 240

Summary . 244

Index . 245

CONTENTS

xii

6145_Ch00 1/11/06 5:47 PM Page xii

FOREWORD

In our wonderful world of web design, there are 3,647 ways to accomplish the same goal.
Approximately. And that absurdly fictitious number is increasing every day. Instead of one,
correct way of solving a particular problem, we’re both blessed and cursed by the abundant
choices we have as web designers. It’s these choices that make designing for the Web fun
and interesting, while at the same time overwhelming. CSS Mastery will help cure that over-
whelmingitis (a word that I’ve just invented).

Andy Budd has been writing, designing, and speaking about standards-based web design for
years, and we’re now lucky to see his clear, easy-to-follow way of teaching essential CSS tech-
niques compiled in this very book. The result is a card catalog of indispensable solutions,
tricks, and tips that a web professional such as yourself should not be without.

I’ve always frowned on publications that suggest a single, correct way of accomplishing a
goal, and Andy does the complete opposite, offering multiple methods for tasks such as
styling links, creating tabbed navigation, or creating columned layouts (to name but a few).
Armed with these popular and stylish approaches to common design elements, you’ll be bet-
ter prepared to make your own informed decisions.

And as if that wasn’t enough, Andy’s gone ahead and enlisted the help of two imitable
designers to help pull all the pieces together, showing how these essential techniques can
work together. I’ve long been a fan of Cameron’s and Simon’s work, and to see two great
case studies covering fluid, bulletproof designs as well as flexible style solutions, respec-
tively… well, that’s just a gigantic bonus.

So dig in and start chipping away at those 3,647 ways to master your CSS.

Dan Cederholm
Salem, Massachusetts
Author, Web Standards Solutions

6145_Ch00 1/11/06 5:47 PM Page xiii

ABOUT THE AUTHORS

Andy Budd is a user experience designer and web standards developer
living and working in Brighton, England. As the creative director of web
design consultancy Clearleft (www.clearleft.com), Andy enjoys building
attractive, accessible, and standards-compliant websites. His online
home can be found at www.andybudd.com, where he writes about modern
web design practices.

Andy is a regular speaker at international design conferences, workshops,
and training events, and organized the UK’s first web 2.0 conference
(www.dconstruct.org). Passionate about the quality of education in the

industry, Andy runs SkillSwap (www.skillswap.org), a free community training and networking
project. Andy also helped set up the Web Standards Awards (www.webstandardsawards.com), a
project that aims to recognize websites for their use of web standards.

When he’s not building websites, Andy is a keen travel photographer. Never happier than
when he’s diving some remote tropical atoll, Andy is also a qualified PADI dive instructor and
retired shark wrangler.

6145_Ch00 1/11/06 5:47 PM Page xv

Cameron Moll, recognized as one of the industry’s most balanced new
media designers, is proficient in functional web design, elegant inter-
faces, and clean markup. Cameron has been involved in the design and
redesign of scores of websites, and his influential techniques have found
favor in circles across the Web. A marketing background and a keen eye
for design lead him to merge form and function in the form of com-
pelling visual experiences.

Cameron's work has been recognized by respected organizations and
notable individuals such as National Public Radio (NPR), Communication

Arts, and Veer. His personal site, CameronMoll.com, delivers design how-tos in the form of
engaging conversation, on-topic banter, and downloadable artwork source files.

Simon Collison is Lead Web Developer at Agenzia (www.agenzia.
co.uk), and has worked on numerous web projects for record labels,
high-profile recording artists, and leading visual artists and illustrators,
including The Libertines, Black Convoy, and Project Facade. Simon also
oversees a production line of business, community, and voluntary sector
websites, and passionately ensures everything he builds is accessible and
usable, and complies with current web standards. Simon regularly
reviews CSS-based websites for Stylegala, and does his best to keep his
highly popular blog (www.collylogic.com) updated with noise about
web standards, music, film, travels, and more web standards.

On those rare occasions away from the computer, Simon can be found in the pub, or trying
to con free gig tickets out of his clients. A little too obsessed with music, he is very likely to
bore you with his latest musical Top 100, or give you a potted history of the UK indie scene
from 1979 to the present day. Simon has lived in many cities, including London and
Reykjavik, but now lives happily in Nottingham with Emma and a cat called Ziggy.

ABOUT THE AUTHORS

xvi

6145_Ch00 1/11/06 5:47 PM Page xvi

ABOUT THE TECHNICAL REVIEWER

Molly E. Holzschlag is a well-known Web standards advocate, instructor, and author. A
popular and colorful individual, she is Group Lead for the Web Standards Project (WaSP) and
an invited expert to the GEO working group at the World Wide Web Consortium (W3C).
Among her 30-plus books is the recent The Zen of CSS Design, coauthored with Dave Shea.
The book artfully showcases the most progressive csszengarden.com designs. You can catch
up with Molly’s blog at—where else?—http://molly.com/.

6145_Ch00 1/11/06 5:47 PM Page xvii

ACKNOWLEDGMENTS

Andy Budd
Thanks to everybody who helped make this book possible, both directly and indirectly.

To Chris for guiding me through the writing process and helping turn my ideas into reality.
And to everybody at Apress who worked tirelessly to get this book published on time. Your
dedication and professionalism is much appreciated.

To my friends and colleagues at Clearleft (www.clearleft.com), Jeremy Keith (www.adactio.com)
and Richard Rutter (www.clagnut.com), for providing encouragement and feedback through-
out the book-writing process.

To Molly E. Holzschlag for lending your experience and breadth of knowledge to this book. Your
support and guidance was invaluable, and I still don’t know where you manage to find the time.

To Jamie Freeman and Jo Acres for providing the perfect environment in which to develop my
skills. I’ll pop around for tea and doughnuts soon. Thanks also to the Brighton web develop-
ment community at large, and especially everybody on the BNM and SkillSwap mailing lists.

To all my colleagues who continue to share their wealth of knowledge in order to make the
Web a better place. This book would not have been possible without the previous work of
the following people, to name but a few: Cameron Adams, John Allsopp, Nathan Barley, Holly
Bergevin, Douglas Bowman, The BritPack, Dan Cederholm, Tantek Çelik, Joe Clark, Andy
Clarke, Simon Collison, Mike Davidson, Garrett Dimon, Derek Featherstone, Nick Fink, Patrick
Griffiths, Jon Hicks, Shaun Inman, Roger Johansson, Ian Lloyd, Ethan Marcotte, Drew
McLellan, Eric Meyer, Cameron Moll, Dunstan Orchard, Veerle Pieters, D. Keith Robinson,
Jason Andrew Andrew Santa Maria, Dave Shea, Ryan Sims, Virtual Stan, Jeffrey Veen, Russ
Weakley, Simon Willison, and Jeffrey Zeldman.

To all the readers of my blog and everybody I’ve met at conferences, workshops, and train-
ing events over the last year. Your discussions and ideas helped fuel the content of this book.

Big thanks to Mel, for proofreading each chapter and putting up with me over the last 9
months.

And lastly, thanks to you for reading. I hope this book helps you take your CSS skills to the
next level.

6145_Ch00_3P 3/29/06 4:19 PM Page xix

Cameron Moll
I’d like to give gratitude to all the contributors to my case study. A big nod goes to Ryan
Parman, whose TIMEDATE script was used to generate the day/month stamp in
the upper-right corner of the Tuscany layout. Download a copy of his script here:
www.skyzyx.com/scripts/.

And endless thanks to Veer for providing the gorgeous images used in this layout. Without
their help, Tuscany Luxury Resorts may have otherwise been visually drab. Somehow, without
fail, Veer always delivers unique, phenomenal visual elements—photography, type, merchan-
dise, and more—that are far from commonplace. Access their collections here: www.veer.com/.

Simon Collison
I must thank the incredible Jon Burgerman (www.jonburgerman.com), Richard May
(www.richard-may.com), and all my other Black Convoy (www.blackconvoy.com) friends for
allowing me to use their images and names, and generally skim the cream off their talent for
this case study. Huge thanks also to the cool Swede Roger Johansson (www.456bereastreet.
com) for allowing me to use his rounded corners and for buying me a drink last summer. The
More Than Doodles design was built quickly and efficiently thanks to the inspired templating
system within the ExpressionEngine (www.expressionengine.com) publishing platform—a tool
I could not live without. Finally, thanks to the Agenzia (www.agenzia.co.uk) boys for turning a
blind eye to my fevered book writing of late. Much appreciated all around.

ACKNOWLEDGMENTS

xx

6145_Ch00 1/11/06 5:47 PM Page xx

INTRODUCTION

There are an increasing number of CSS resources around, yet you only have to look at a CSS
mailing list to see the same questions popping up time and again. “How do I center a
design?” “What is the best rounded-corner box technique?” “How do I create a three-column
layout?” If you follow the CSS design community, it is usually a case of remembering which
website a particular article or technique is featured on. However, if you are relatively new to
CSS, or don’t have the time to read all the blogs, this information can be hard to track down.

Even people who are skilled at CSS run into problems with some of the more obscure
aspects of CSS such as the positioning model or specificity. This is because most CSS devel-
opers are self-taught, picking up tricks from articles and other people’s code without fully
understanding the spec. And is it any wonder, as the CSS specification is complex and often
contradictory, written for browser manufacturers rather than web developers?

Then there are the browsers to contend with. Browser bugs and inconsistencies are one of
the biggest problems for the modern CSS developer. Unfortunately, many of these bugs are
poorly documented and their fixes verge on the side of folk law. You know that you have
to do something a certain way or it will break in one browser or another. You just can’t
remember which browser or how it breaks.

So the idea for a book formed. A book that brings together the most useful CSS techniques
in one place, that focuses on real-world browser issues and that helps plug common gaps in
people’s CSS knowledge. A book that will help you jump the learning curve and have you
coding like a CSS expert in no time flat.

Who is this book for?
CSS Mastery is aimed at anybody with a basic knowledge of (X)HTML and CSS. If you have
just recently dipped your toes into the world of CSS design, or if you’ve been developing
pure CSS sites for years, there will be something in this book for you. However, you will get
the most out of this book if you have been using CSS for a while but don’t consider yourself
a master just yet. This book is packed full of practical, real-world advice and examples, to
help you master modern CSS design.

6145_Ch00 1/11/06 5:47 PM Page xxi

How is this book structured?
This book eases you in gently, with two chapters on basic CSS concepts and best practices.
You will learn how to structure and comment your code, the ins-and-outs of the CSS posi-
tioning model, and how floating and clearing really works. You may know a lot of this
already, but you will probably find bits you’ve missed or not understood fully. As such, the
first two chapters act as a great CSS primer as well as a recap on what you already know.

With the basics out of the way, the next five chapters cover core CSS techniques such as image,
link, and list manipulation; form and data-table design; and pure CSS layout. Each chapter starts
simply and then works up to progressively more complicated examples. In these chapters you
will learn how to create rounded-corner boxes, images with transparent drop shadows, tabbed
navigation bars, and flickr-style rollovers. If you want to follow along with the examples in this
book, all the code examples can be downloaded from www.friendsofed.com.

Browser bugs are the bane of many a CSS developer, so all the examples in this book focus
on creating techniques that work across browsers. What’s more, this book has two whole
chapters devoted to hacks, filters, bugs, and bug fixing. In these chapters you will learn about
some of the most common filters, when to use them, and when not to use them. You will
also learn about bug-hunting techniques and how to spot and fix common bugs before they
start causing problems. You will even learn what really causes many of Microsoft Internet
Explorer’s seemingly random CSS bugs.

The last two chapters are the piece de resistance. Simon Collison and Cameron Moll, two of
the best CSS designers around, have combined all of these techniques into two fantastic case
studies. So you learn not only how these techniques work, but also how to put them into
practice on a real-life web project.

This book can be read from cover to cover, or kept by your computer as a reference of mod-
ern tips, tricks, and techniques. The choice is up to you.

INTRODUCTION

xxii

6145_Ch00 1/11/06 5:47 PM Page xxii

Conventions used in this book
This book uses a couple of conventions that are worth noting. The following terms are used
throughout this book:

(X)HTML refers to both the HTML and XHTML languages.

Unless otherwise stated, CSS relates to the CSS 2.1 specification.

IE 5.x/Win means Internet Explorer versions 5.0 and 5.5 for Windows.

IE 6 and below on Windows refers to Internet Explorer 5.0 to 6.0 on Windows.

It is assumed that all the (X)HTML examples in this book are nested in the <body> of a valid
document, while the CSS is contained in the <head> of the document for convenience.
Occasionally, (X)HTML and CSS have been placed in the same code example for brevity.
However, in a real document, these items need to go in their respective places to function
correctly.

p {color: red;}

<p>I'm red</p>

Lastly, for (X)HTML examples that contain repeating data, rather than writing out every line,
the ellipsis character (…) is used to denote code continuation:

Red
Yellow
Pink
Green
…

So, with the formalities out of the way, let’s get started.

INTRODUCTION

xxiii

6145_Ch00_3P 3/29/06 4:21 PM Page xxiii

1 SETTING THE FOUNDATIONS

basic.css

6145_Ch01 1/11/06 6:19 PM Page 1

The human race is a naturally inquisitive species. We just love tinkering with things. When
I recently bought a new iMac G5 I had it to bits within seconds, before I’d even read the
instructions. We enjoy working things out ourselves, creating our own mental models
about how we think things behave. We muddle through and only turn to the manual when
something goes wrong or defies our expectations.

One of the best ways to learn Cascading Style Sheets (CSS) is to jump right in and start tin-
kering. However, if you’re not careful you may end up misunderstanding an important
concept or building in problems for later on. In this chapter, I am going to review some
basic, but often misunderstood, concepts and show you how to keep your (X)HTML and
CSS clear and well structured.

In this chapter you will learn about

The importance of a well-structured and meaningful document

Coding best practices

Common coding mistakes

Document types, DOCTYPE switching, and browser modes

Ways to target your styles

The cascade, specificity, and inheritance

Structuring your code
Most people don’t think about the foundations of a building. However, without solid
foundations, the majority of the buildings around us wouldn’t exist. While this book is
about advanced CSS techniques, much of what we are going to do would not be possible
(or would be very difficult) without a well-structured and valid (X)HTML document to
work with.

In this section you will learn why well-structured and meaningful (X)HTML is important in
CSS development. You will also learn how you can add more meaning to your documents,
and by doing so, make your job as a developer easier.

When we use the term XHTML, we are referring to Extensible Hypertext Markup
Language, and when we use the term (X)HTML, we are referring to both XHTML
and HTML.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

2

6145_Ch01 1/11/06 6:19 PM Page 2

Use meaningful markup

The early Web was little more than a series of interlinked research documents using HTML
to add basic formatting and structure. However, as the World Wide Web increased in pop-
ularity, HTML started being used for presentational purposes. Instead of using heading ele-
ments for page headlines, people would use a combination of font and bold tags to create
the visual effect they wanted. Tables got co-opted as a layout tool rather than a way of dis-
playing data, and people would use blockquotes to add whitespace rather than to indicate
quotations. Very quickly the Web lost its meaning and became a jumble of font and table
tags (see Figure 1-1).

Figure 1-1. The markup for the lead story from abcnews.com on August 14, 2000, uses tables for
layout and large, bold text for headings. The code lacks structure and is difficult to understand.

HTML was intended to be a simple and understandable markup language. However, as web
pages became more and more presentational, the code became almost impossible to
understand. As such, complicated WYSIWYG (What You See Is What You Get) tools were
needed to handle this mass of meaningless tags. Unfortunately, rather than making things
simpler, these tools added their own complicated markup to the mix. By the turn of the
millennium, the average web page was so complicated it was almost impossible to edit by
hand for fear of breaking the code. Something needed to be done.

Then along came Cascading Style Sheets. With CSS it became possible to control how a
page looked externally and to separate the presentational aspect of a document from its
content. Presentational tags like the font tag could be ditched, and layout could be con-
trolled using CSS instead of tables. Markup could be made simple again, and people began
to develop a newfound interest in the underlying code.

SETTING THE FOUNDATIONS

3

1

6145_Ch01 1/11/06 6:19 PM Page 3

Meaning started to creep back into documents. Browser default styles could be overrid-
den so it became possible to mark something up as a heading without it being big, bold,
and ugly. Lists could be created that didn’t display as a series of bullet points, and block-
quotes could be used without the associated styling. Developers started to use (X)HTML
elements because of what they meant rather than how they looked (see Figure 1-2).

Figure 1-2. The markup for the lead story on abcnews.com from earlier this year is well structured
and easy to understand. While it does contain some presentational markup, the code is a significant
improvement on the code in Figure 1-1.

Meaningful markup provides the developer with several important benefits. Meaningful
pages are much easier to work with than presentational ones. For example, say you need
to change a quotation on a page. If the quotation is marked up correctly, it is easy to scan
through the code until you find the first blockquote element. However, if the quotation is
just another paragraph element tag, it will be a lot harder to find.

As well as being easy for humans to understand, meaningful markup—otherwise known as
semantic markup—can be understood by programs and other devices. Search engines, for
instance, can recognize a headline because it is wrapped in h1 tags and assign more impor-
tance to it. Screenreader users can rely on headings as supplemental page navigation.

Most importantly for the context of this book, meaningful markup provides you with a
simple way of targeting the elements you wish to style. It adds structure to a document
and creates an underlying framework to build upon. You can style elements directly with-
out needing to add other identifiers, and thus avoid unnecessary code bloat.

(X)HTML includes a rich variety of meaningful elements, such as

h1, h2, etc.

ul, ol, and dl

strong and em

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

4

6145_Ch01 1/11/06 6:19 PM Page 4

blockquote and cite

abbr, acronym, and code

fieldset, legend, and label

caption, thead, tbody, and tfoot

As such, it is always a good idea to use an appropriate meaningful element where one
exists.

IDs and class names
Meaningful elements provide an excellent foundation, but the list of available elements
isn’t exhaustive. (X)HTML was created as a simple document markup language rather than
an interface language. Because of this, dedicated elements for things such as content areas
or navigation bars just don’t exist. You could create your own elements using XML, but for
reasons too complicated to go into, it’s not very practical at this time.

The next best thing is to take existing elements and give them extra meaning with the
addition of an ID or a class name. This adds additional structure to your document, and
provides useful hooks for your styles. So you could take a simple list of links, and by giving
it an ID of mainNav, create your own custom navigation element.

<ul id="mainNav">
Home
About Us
Contact

An ID name is used to identify an individual element on a page, such as the site navigation,
and must be unique. IDs are useful for identifying persistent structural elements such as
the main navigation or content areas. They are also useful for identifying one-off ele-
ments—a particular link or form element, for example.

Across a site, ID names should be applied to conceptually similar elements in order to
avoid confusion. Technically, you could give both your contact form and your contact
details the ID name of contact, assuming they were on separate pages. However, you
would then need to style each element based on its context, which could be problematic.
Instead, it would be much simpler to use distinct ID names such as contactForm and
contactDetails.

While a single ID name can only be applied to one element on a page, the same class name
can be applied to any number of elements on a page. Classes are very useful for identify-
ing types of content or similar items. For instance, you may have a news page that contains
the date of each story. Rather than giving each date a separate ID, you could give all of
them a class name of date.

When naming your IDs and classes, it is important that you keep the names as meaningful
and “un-presentational” as possible. For instance, you could give your section navigation
an ID of rightHandNav as that is where you want it to appear. However, if you later choose
to position it on the left, your CSS and (X)HTML will go out of sync. Instead, it would make

SETTING THE FOUNDATIONS

5

1

6145_Ch01 1/11/06 6:19 PM Page 5

more sense to name the element subNav or secondaryNav. These names explain what the
element is rather than how it is presented. The same is true of class names. Say you want
all your error messages to be red. Rather than using the class name red, choose something
more meaningful like error or feedback (see Figure 1-3).

Figure 1-3. Good and bad ID names

When writing class and ID names, you need to pay attention to case sensitivity. CSS is gen-
erally a case-insensitive language. However, the case-sensitivity of things that appear in the
markup, such as class and ID names, depends on the case sensitivity of the markup lan-
guage. If you are using XHTML, class and ID names are case sensitive, whereas with regular
HTML they are case insensitive. The best way to handle this issue is simply to be consistent
with your naming conventions. So, if you use camel case in your (X)HTML class names,
carry this through to your CSS as well.

Due to the flexibility of classes, they can be very powerful. At the same time, they can be
overused and even abused. Novice CSS authors often add classes to nearly everything in
an attempt to get fine-grained control over their styles. Early WYSIWYG editors also had
the tendency to add classes each time a style was applied. Many developers picked up this
bad habit when using generated code to learn CSS. This affliction is described as classitis
and is, in some respects, as bad as using table-based layout because it adds meaningless
code to your document.

<h3 class="newsHead">Zeldman.com turns 10</h3>
<p class="newsText">
Another milestone for Jeffrey as zeldman.com turns 10 today
</p>
<p class="newsText">More</p>

In the preceding example, each element is identified as being part of a news story by using
an individual news-related class name. This has been done to allow news headlines and
text to be styled differently from the rest of the page. However, you don’t need all these
extra classes to target each individual element. Instead, you can identify the whole block
as a news item by wrapping it in a division with a class name of news. You can then target
news headlines or text by simply using the cascade.

<div class="news">
<h3>Zeldman.com turns 10</h3>
<p>Another milestone for Jeffrey as zeldman.com turns 10 today</p>
<p>More</p>
</div>

Bad Names

red
leftColumn
topNav
firstPara

Good Names

error
secondaryContent
mainNav
intro

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

6

6145_Ch01 1/11/06 6:19 PM Page 6

Removing extraneous classes in this way will help simplify your code and reduce page
weight. I will discuss CSS selectors and targeting your styles shortly. However, this overre-
liance on class names is almost never necessary. I usually only apply a class to an element
if an ID isn’t suitable, and I try to use them sparingly. Most documents I create usually only
need the addition of a couple of classes. If you find yourself adding lots of classes, it’s
probably an indication that your (X)HTML document is poorly structured.

Divs and spans
One element that can help add structure to a document is a div element. Many people
mistakenly believe that a div element has no semantic meaning. However, div actually
stands for division and provides a way of dividing a document into meaningful areas. So by
wrapping your main content area in a div and giving it an ID of mainContent, you are
adding structure and meaning to your document.

To keep unnecessary markup to a minimum, you should only use a div element if there is
no existing element that will do the job. For instance, if you are using a list for your main
navigation, there is no need to wrap it in a div.

<div id="mainNav">

Home
About Us
Contact

</div>

You can remove the div entirely and simply apply the ID to the list instead:

<ul id="mainNav">
Home
About Us
Contact

Using too many divs is often described as divitus and is usually a sign that your code is
poorly structured and overly complicated. Some people new to CSS will try to replicate
their old table structure using divs. But this is just swapping one set of extraneous tags for
another. Instead, divs should be used to group related items based on their meaning or
function rather than their presentation or layout.

Whereas divs can be used to group block-level elements, spans can be used to group or
identify inline elements:

<h2>Where’s Durstan?</h2>
<p>Published on March 22nd, 2005
by Andy Budd</p>

It’s generally less common to need to group or identify inline elements, so spans are seen
less frequently than divs. Where you will see spans used are effects such as image replace-
ment, which use them as extra hooks to hang additional styles on.

SETTING THE FOUNDATIONS

7

1

6145_Ch01 1/11/06 6:19 PM Page 7

Although the goal is to keep your code as lean and meaningful as possible, sometimes you
cannot avoid adding an extra nonsemantic div or span to display the page the way
you want. If this is the case, don’t fret too much over it. We live in a transitional period and
hopefully CSS 3 will give us much greater control of our documents. In the meantime, real-
world needs often have to come before theory. The trick is knowing when you have to
make a compromise and if you are doing it for the right reasons.

Document types, DOCTYPE switching,
and browser modes

A document type definition (DTD) is a set of machine-readable rules that define what is
and isn’t allowed in a particular version of XML or (X)HTML. Browsers will use these rules
when parsing a web page to check the validity of the page and act accordingly. Browsers
know which DTD to use, and hence which version of (X)HTML you are using, by analyzing
the page’s DOCTYPE declaration.

A DOCTYPE declaration is a line or two of code at the start of your (X)HTML document
that describes the particular DTD being used. In this example, the DTD being used is for
XHTML 1.0 Strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

CSS comes in various versions, or “levels,” so it’s important to know which ver-
sion to use. CSS 1 became a recommendation at the end of 1996 and contains
very basic properties such as fonts, colors, and margins. CSS 2 built on this and
added advanced concepts such as floating and positioning to the mix, as well as
advanced selectors such as the child, adjacent sibling, and universal selectors.
At the time of writing, CSS 2 was still the latest version of CSS, despite becoming
a recommendation as long ago as 1998.

Time moves very slowly at the World Wide Web Consortium (W3C), so while
work on CSS 3 started before the turn of the millennium, the final release is still
a long way off. To help speed development and browser implementation, CSS 3
has been broken down into modules that can be released and implemented
independently. CSS 3 contains some exciting new additions, including a module
for multicolumn layout. However, the selectors module is nearest completion
and could possibly become a recommendation as early as 2006.

Because of the expected length of time between the release of CSS 2 and CSS 3,
work started in 2002 on CSS 2.1. This revision of CSS 2 intends to fix some errors
and provide a much more accurate picture of CSS browser implementation. CSS
2.1 is slowly nearing completion but probably won’t be finished until late 2006.
But it does provide a much more accurate representation of the current state of
CSS and is the version I currently use.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

8

6145_Ch01 1/11/06 6:19 PM Page 8

DOCTYPE declarations will typically, but not always, contain a URL to the specified
DTD file. Browsers tend to not read these files, choosing instead to recognize common
DOCTYPE declarations.

Validation

As well as being semantically marked up, an (X)HTML document needs to be written using
valid code. If the code is invalid, browsers will try to interpret the markup themselves,
sometimes getting it wrong. Worse still, if an XHTML document is being sent with the cor-
rect MIME type, browsers that understand XML simply won’t display an invalid page.
Because browsers need to know which DTD to use in order to process the page correctly,
a DOCTYPE declaration is required for the page to validate.

You can check to see if your (X)HTML is valid by using the W3C validator, a validator book-
marklet, or a plug-in like the Firefox Developer Extension. Many (X)HTML editors now
have validators built in, and you can even install a copy of the W3C validator locally on
your computer. The validator will tell you if your page validates, and if not, why not.

Validation is important because it can help you track down bugs in your code. As such, it
is a good idea to get into the habit of validating early and often. However, validation isn’t
an end unto itself, and many otherwise good pages fail to validate due to small errors such
as unencoded ampersands, or because of legacy content. So although validation is impor-
tant, in the real world, a degree of common sense is required.

Various code validation tools are available. You can validate your site online by
going to http://validator.w3.org/ and entering your URL. However, if you
are going to validate often—which is a good idea—typing your URL each time
can become a little tedious. Instead, I use a handy validation bookmarklet, or
favelet, which is a small piece of JavaScript that can be stored in the bookmarks
or favorites folder in your browser. Clicking the bookmark will trigger the
JavaScript action. In the case of the validator bookmarklet, it runs the page you
are currently on through the W3C validator and displays the results. You can
find the validator bookmarklet along with many other handy web development
bookmarklets on my personal site at www.andybudd.com/bookmarklets/.

If you use Firefox, you can download and install a wide variety of plug-ins.
Among the numerous validator plug-ins available, my personal favorite is the
Web Developers Extension plug-in. As well as allowing you to validate your
(X)HTML and CSS, it enables you to do a wide variety of other useful tasks like
outlining various (X)HTML elements, turning off stylesheets, and even editing
styles in the browser. The Web Developers Extension can be downloaded from
http://chrispederick.com/work/firefox/webdeveloper/ and is a must-have
for any CSS developer using Firefox.

There is now also a developer toolbar for Internet Explorer 6 and above. You can
download this toolbar from http://tinyurl.com/7mnyh. Although it is not as
feature rich as the Firefox toolbar, it is still extremely useful.

SETTING THE FOUNDATIONS

9

1

6145_Ch01 1/11/06 6:19 PM Page 9

As well as being important for validation, browsers have started to use DOCTYPE declara-
tions for another purpose.

Browser modes
When browser manufacturers started to create standards-compliant browsers, they
wanted to ensure backward compatibility. To accomplish this, they created two rendering
modes: standards mode and quirks mode. In standards mode the browser renders a page
according to the specifications, and in quirks mode pages are displayed in a looser, more
backward-compatible fashion. Quirks mode typically emulates the behavior of older
browsers such as Microsoft Internet Explorer 4 and Netscape Navigator 4 to prevent older
sites from breaking.

The most obvious example of the difference between these modes revolves around the
Internet Explorer on Windows proprietary box model. When Internet Explorer 6 debuted,
the correct box model was used in standards mode, while the older, proprietary box model
was used in quirks mode. To maintain backward compatibility with sites built for IE 5 and
below, Opera 7 and above also uses IE’s faulty box model in quirks mode.

Other differences in rendering are subtler and specific to certain browsers. However, they
include things like not requiring the # symbol for hex color values, assuming lengths with-
out units in CSS are pixels, and increasing the font size by one step when using keywords.

Mozilla and Safari have a third mode called “almost standards mode,” which is the same as
standards mode, except for some subtle differences in the way tables are handled.

DOCTYPE switching
The browser chooses which rendering method to use based on the existence of a DOC-
TYPE declaration and the DTD being used. If an XHTML document contains a fully formed
DOCTYPE, it will normally be rendered in standards mode. For an HTML 4.01 document, a
DOCTYPE containing a strict DTD will usually cause the page to render in standards mode.
A DOCTYPE containing a transitional DTD and URI will also cause the page to render in
standards mode, while a transitional DTD without a URI will cause the page to render in
quirks mode. A badly formed or nonexistent DOCTYPE will cause both HTML and XHTML
documents to be rendered in quirks mode.

The effect of choosing a rendering mode based on the existence of a DOCTYPE is known
as DOCTYPE switching, or DOCTYPE sniffing. Not all browsers follow these exact rules, but
they give you a good idea of how DOCTYPE switching works. Eric Meyer has done some
further research on this subject and has created a chart (http://meyerweb.com/
eric/dom/dtype/dtype-grid.html) that shows the various rendering modes different
browsers use depending on the DOCTYPE declaration in use.

DOCTYPE switching is a hack used by browsers to distinguish legacy documents from more
standards-compliant ones. Despite writing valid CSS, if you choose the wrong DOCTYPE,
your pages will be rendered in quirks mode and behave in a buggy and unpredictable way.
As such, it is important to include a fully formed DOCTYPE declaration on every page of
your site and choose a strict DTD when using HTML.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

10

6145_Ch01_8P.qxd 1/2/07 12:52 PM Page 10

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Many HTML editors will automatically add a DOCTYPE declaration for you. If you are cre-
ating an XHTML document they may also add an XML declaration before the DOCTYPE
declaration:

<?xml version="1.0" encoding="utf-8"?>

An XML declaration is an optional declaration used by XML files to define things such as
the version of XML being used and the type of character encoding. Unfortunately, IE 6
automatically switches to quirks mode if the DOCTYPE declaration is not the first element
on a page. Therefore, unless you are serving your pages as XML documents, it is best to
avoid using an XML declaration.

Getting your styles to hit the target
A valid and well-structured document provides the framework to which your styles are
applied. To be able to style a particular (X)HTML element using CSS, you need to have
some way of targeting that element. In CSS the part of a style rule that does this is called
the selector.

Common selectors

The most common kinds of selectors are type and descendant selectors. Type selectors are
used to target a particular type of element, such as a paragraph, an anchor, or a heading
element. You do this by simply specifying the name of the element you wish to style. Type
selectors are sometimes also referred to as element or simple selectors.

p {color: black;}
a {text-decoration: underline;}
h1 {font-weight: bold;}

Descendant selectors allow you to target the descendants of a particular element or group
of elements. A descendant selector is indicated by a space between two other selectors. In
this example, only anchor elements that are descendants of a list item will be styled, so
anchors within a paragraph will be unaffected.

li a {text-decoration: none;}

SETTING THE FOUNDATIONS

11

1

6145_Ch01_3P 3/29/06 4:22 PM Page 11

These two types of selector are great for applying generic styles that apply across the
board. To be more specific and target selected elements, you can use ID and class selec-
tors. As the names suggest, these selectors will target elements with the corresponding ID
or class name. ID selectors are identified using a hash character; class selectors are identi-
fied with a period. The first rule in this example will make the text in the introductory
paragraph bold, and the second rule will make the date green:

#intro {font-weight: bold;}
.datePosted {color: green;}

<p id="intro">Some Text</p>
<p class="datePosted">24/3/2006</p>

As I mentioned previously, many CSS authors develop an overreliance on class and, to a
lesser extent, ID selectors. If they want to style headlines one way in the main content area
and another way in the secondary content area, there is the tendency to create two classes
and apply a class to each headline. A much simpler approach is to use a combination of
type, descendant, ID, and/or class selectors:

#mainContent h1 {font-size: 1.8em;}
#secondaryContent h1 {font-size: 1.2em;}

<div id="mainContent">
<h1>Welcome to my site</h1>
...
</div>
<div id="secondaryContent">
<h1>Latest news</h1>
...
</div>

This is a very simple and obvious example. However, you will be surprised how many ele-
ments you can successfully target using just the four selectors discussed so far. If you find
yourself adding lots of extraneous classes to your document, it is probably a warning sign
that your document is not well structured. Instead, think about how these elements differ
from each other. Often you will find that the only difference is where they appear on the
page. Rather than give these elements different classes, think about applying a class or an
ID to one of their ancestors, and then targeting them using a descendant selector.

Pseudo-classes
There are instances where you may want to style an element based on something other
than the structure of the document—for instance, the state of a form element or link. This
can be done using a pseudo-class selector.

/* makes all unvisited links blue */
a:link {color:blue;}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

12

6145_Ch01_3P 4/3/06 2:11 PM Page 12

/* makes all visited links green */
a:visited {color:green;}

/* makes links red when hovered or activated */
a:hover, a:active {color:red;}

/* makes table rows red when hovered over */
tr:hover {background-color: red;}

/* makes input elements yellow when focus is applied */
input:focus {background-color:yellow;}

:link and :visited are known as link pseudo-classes and can only be applied to anchor
elements. :hover, :active, and :focus are known as dynamic pseudo-classes and can
theoretically be applied to any element. Unfortunately, only a few modern browsers such
as Firefox support this functionality. IE 6 and below only pays attention to :active and
:hover selectors if applied to an anchor link, and ignores :focus completely.

The universal selector

The universal selector is possibly one of the most powerful and least used of all the selec-
tors. The universal selector acts like a wildcard, matching all the available elements. Like
wildcards in other languages, the universal selector is denoted by an asterisk. The universal
selector is normally used to style every element on a page. For instance, you can remove
the default browser padding and margin on every element using the following rule:

* {
padding: 0;
margin: 0;

}

When combined with other selectors, the universal selector can be used to style all the
descendants of a particular element, or skip a level of descendants. You will see how this
can be put to practical effect a little later in this chapter.

Advanced selectors

CSS2 has a number of other useful selectors. Unfortunately, while modern browsers such
as Firefox and Safari support these advanced selectors, IE 6 and below do not. Luckily, CSS
was created with backward compatibility in mind. If a browser doesn’t understand a selec-
tor, it ignores the whole rule. That way, you can apply stylistic and usability embellishments
in more modern browsers, and not worry about it causing problems in older browsers. Just
remember to avoid using these more advanced selectors for anything critical to the func-
tioning of your site.

SETTING THE FOUNDATIONS

13

1

6145_Ch01 1/11/06 6:19 PM Page 13

Child and adjacent sibling selectors
The first of these advanced selectors is the child selector. Whereas a descendant selector
will select all the descendants of an element, a child selector only targets the element’s
immediate descendants, or “children.” In the following example, the list items in the outer
list will be bold while list items in the nested list will remain unaffected:

#nav > li {font-weight: bold;}

<ul id="nav">
Home
Services

Design
Development
Consultancy

Contact Us

It is possible to “fake” a child selector that works in IE 6 and below by using the universal
selector. To do this you first apply to all of the descendants the style you want the children
to have. You then use the universal selector to override these styles on the children’s
descendants. So to fake the previous child selector example you would do this:

#nav li {font-weight: bold;}
#nav li * {font-weight: normal;}

You may also want to style an element based on its proximity to another element. The
adjacent sibling selector allows you to target an element that is preceded by another ele-
ment that shares the same parent. Using the sibling selector, you could make the first
paragraph following a top-level heading bold, while leaving other paragraphs unaffected:

h1 + p {font-weight: bold;}

<h1>Main Heading</h1>
<p>First Paragraph</p>
<p>Second Paragraph</p>

Attribute selectors
As the name suggests, the attribute selector allows you to target an element based on the
existence of an attribute or the attribute’s value. This allows you to do some very interest-
ing and powerful things.

For example, when you hover over an element with a title attribute, most browsers will
display a tooltip. You can use this behavior to expand the meaning of things such as abbre-
viations:

<abbr title="Cascading Style Sheets">CSS</abbr>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

14

6145_Ch01 1/11/06 6:19 PM Page 14

However, there is no way to tell that this extra information exists without hovering over
the element. To get around this problem, you can use the attribute selector to style abbr
elements with titles differently from other elements—in this case, by giving them a dotted
bottom border. You can provide more contextual information by changing the cursor from
a pointer to a question mark when the cursor hovers over the element, indicating that this
element is different from most.

abbr[title] {border-bottom: 1px dotted #999;}
abbr[title]:hover {cursor: help;}

In addition to styling an element based on the existence of an attribute, you can apply
styles based on a particular value. For instance, sites that are linked to using a rel attrib-
ute of nofollow gain no added ranking benefit from Google. The following rule displays an
image next to such links, possibly as a way of showing disapproval of the target site:

a[rel="nofollow"] {
background-image: url(nofollow.gif);
padding-right: 20px;

}

One clever way of using the attribute selector is to capitalize on the fact that IE 6 and
below does not support it. You can then apply one style to IE and another style to more
standards-compliant browsers. For instance, IE has problems displaying 1-pixel dotted
borders, choosing to render them dashed instead. Using an attribute selector, you could
choose to apply your dotted-border style only to browsers you know will render it
correctly. This is done by targeting the class attribute rather than using a class selector.

.intro {border-style: solid;}
[class="intro"] {border-style: dotted;}

Some attributes can have more than one value, separated by spaces. The attribute selector
allows you to target an element based on one of those values. For instance, a group of
developers have suggested using predefined keywords in the attribute of links to define
the relationship one site owner has with another. You can use this information to apply an
image to any links that contain the keyword friend in the rel attribute.

a[rel~="friend"] {background-image: url(friend.gif);}

John Hicks

Using the rel attribute with friend values is known as the XHTML
Friends Network, or XFN for short, and is one of several new “microformats”
to have developed recently. You can find out more about XFN at
http://gmpg.org/xfn/ and about the concept of microformats in general
at http://microformats.org.

SETTING THE FOUNDATIONS

15

1

6145_Ch01_3P 4/3/06 2:15 PM Page 15

Once these advanced CSS 2 selectors are widely supported, the need to add extra divs or
classes to your code will be greatly reduced.

The cascade and specificity

With even a moderately complicated stylesheet, it is likely that two or more rules will tar-
get the same element. CSS handles such conflicts through a process known as the cascade.
The cascade works by assigning an importance to each rule. Author stylesheets are con-
sidered the most important, followed by user stylesheets, and finally the default
stylesheets used by your browser or user agent. To give users more control, they can over-
ride any rule by specifying it as !important—even a rule flagged as !important by the
author.

So the cascade works in the following order of importance:

User styles flagged as !important

Author styles flagged as !important

Author styles

User styles

Styles applied by the browser/user agent

Rules are then ordered by how specific the selector is. Rules with more specific selectors
override those with less specific ones. If two rules are equally specific, the last one defined
takes precedence.

Specificity
To calculate how specific a rule is, each type of selector is assigned a numeric value. The
specificity of a rule is then calculated by adding up the value of each of its selectors.
Unfortunately, specificity is not calculated in base 10 but a high, unspecified, base number.
This is to ensure that a highly specific selector, such as an ID selector, is never overridden
by lots of less specific selectors, such as type selectors. However, if you have fewer than 10
selectors in a specific selector, you can calculate specificity in base 10 for simplicity’s sake.

The specificity of a selector is broken down into four constituent levels: a, b, c, and d.

If the style is an inline style, then a = 1.

b = the total number of ID selectors.

c = the number of class, pseudo-class, and attribute selectors.

d = the number of type selectors and pseudo-element selectors.

Using these rules it is possible to calculate the specificity of any CSS selector. Table 1-1
shows a series of selectors, along with their associated specificity.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

16

6145_Ch01 1/11/06 6:19 PM Page 16

Table 1-1. Specificity example

Selector Specificity Specificity in base 10

Style="" 1,0,0,0 1000

#wrapper #content {} 0,2,0,0 200

#content .datePosted {} 0,1,1,0 110

div#content {} 0,1,0,1 101

#content {} 0,1,0,0 100

p.comment .dateposted {} 0,0,2,1 21

p.comment{} 0,0,1,1 11

div p {} 0,0,0,2 2

p {} 0,0,0,1 1

At first glance, all this talk of specificity and high but undefined based numbers may seem
a little confusing, so here’s what you need to know. Essentially, a rule written in a style
attribute will always be more specific than any other rule. A rule with an ID will be more
specific than one without an ID, and a rule with a class selector will be more specific than
a rule with just type selectors. Finally, if two rules have the same specificity, the last one
defined prevails.

Using specificity in your stylesheets
Specificity is very useful when writing CSS as it allows you to set general styles for common
elements and then override them for more specific elements. For instance, say you want
most of the forms on your site to be 30em wide but your search form needs to be only
15em wide:

form {width: 30em;}
form#search {width: 15em;}

Whenever you want to create a new form you do not have to worry about changing any-
thing in the CSS, as you know it will be styled correctly. However, on larger sites you will
find more and more exceptions will start to creep in. Maybe you will have a login form
that you want to be 20em wide or a larger application form that needs to be 40em wide.
Each time you create a more specific style, you will probably need to override some of the
general rules. This can lead to quite a bit of extra code. It can also start to get very com-
plicated as one element may be picking up styles from a variety of places.

To avoid too much confusion, I try to make sure my general styles are very general while my
specific styles are as specific as possible and never need to be overridden. If I find that I have
to override general styles several times, it’s simpler to remove the declaration that needs to be
overridden from the more general rules and apply it explicitly to each element that needs it.

SETTING THE FOUNDATIONS

17

1

6145_Ch01 1/11/06 6:19 PM Page 17

Adding a class or an ID to the body tag
One interesting way to use specificity is to apply a class or an ID to the body tag. By doing
this, you can then override styles on a page-by-page or even a site-wide basis. For instance,
if you wanted your homepage to have a different layout from the rest of your site, you could
add a class name to the body element on your home page and use it to override your styles:

#content {
float: left;

}

.homepage #content {
float: right;

}

#nav {
float: right;

}

.homepage #nav {
float: left;

}

You will see later on how this technique can be used to highlight the current page a visitor
is on in your site navigation.

Adding an ID to every page of your site gives users the ability to override your stylesheets
with their own user stylesheets. Site-wide IDs, known colloquially as CSS signatures, tend
to take the format id="www-sitename-com". At a simple level the users may want to over-
ride your font sizes or color scheme to make the site easier to read. They could do so by
adding the following rule to their user stylesheet:

body#www-andybudd-com {
font-size: 200%
background-color: black;
color: white;

}

However, it doesn’t need to stop there. CSS signatures give your users the power to com-
pletely restyle your site. They could hide elements they don’t like, change the layout, or
come up with a completely new design.

Inheritance

People often confuse inheritance with the cascade. Although they seem related at first
glance, the two concepts are actually quite different. Luckily, inheritance is a much easier
concept to grasp. Certain properties, such as color or font size, are inherited by the
descendants of the elements those styles are applied to. For instance, if you were to give
the body element a text color of black, all the descendants of the body element would
also have black text. The same would be true of font sizes. If you gave the body a font size
of 14 pixels, everything on the page should inherit that font size. I say should because IE

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

18

6145_Ch01 1/11/06 6:19 PM Page 18

for Windows and Netscape have problems inheriting font sizes in tables. To get around
this, you will either have to specify that tables should inherit font sizes or set the font size
on tables separately.

If you set the font size on the body, you will notice that this style is not picked up by any
headings on the page. You may assume that headings do not inherit text size. But it is actu-
ally the browser default stylesheet setting the heading size. Any style applied directly to an
element will always override an inherited style. This is because inherited styles have a null
specificity.

Inheritance is very useful as it lets you avoid having to add the same style to every descen-
dant of an element. If the property you are trying to set is an inherited property, you may
as well apply it to the parent element. After all, what is the point of writing this:

p, div, h1, h2, h3, ul, ol, dl, li {color: black;}

when you can just write this:

body {color: black;}

Just as sensible use of the cascade can help simplify your CSS, good use of inheritance can
help to reduce the number and complexity of the selectors in your code. It you have lots
of elements inheriting various styles, though, determining where the styles originate can
become confusing.

Planning, organizing, and maintaining
your stylesheets

The larger, more complicated, and graphically rich your sites become, the harder your CSS
is to manage. In this section, I will look at ways to help you manage your code, including
splitting up your files into multiple stylesheets, grouping your styles into logical sections,
and adding comments to make your code easier to read.

Applying styles to your document

You can add styles directly to the head of a document by placing them between style
tags; however, this is not a very sensible way to apply styles to a document. If you want to
create another page using the same styles, you would have to duplicate the CSS on the
new page. If you then wanted to change a style, you would have to do it in two places
rather than one. Luckily, CSS allows us to keep all our styles in one or more external
stylesheets. There are two ways to attach external stylesheets to a web page. You can link
to them or you can import them:

<link href="/css/basic.css" rel="stylesheet" type="text/css" />
<style type="text/css">
<!--
@import url("/css/advanced.css");
-->
</style>

SETTING THE FOUNDATIONS

19

1

6145_Ch01 1/11/06 6:19 PM Page 19

Older browsers such as Netscape 4 do not understand importing. Therefore, you can use
import to hide complicated styles from older browsers, which they may not understand. In
the previous example I linked to a simple stylesheet that contained basic typographic
styles most browsers will understand. I then imported a more advanced stylesheet that
contained more complicated styles like floated or positioned layouts. Using this method
you can even create one design for older browsers and another for more modern versions.

You do not have to confine importing to an (X)HTML document. You can also import one
stylesheet from another stylesheet. This allows you to link to your basic stylesheet from
the (X)HTML page and then import your more complicated styles into that stylesheet (see
Figure 1-4):

@import url(/css/layout.css);
@import url(/css/typography.css);
@import url(/css/color.css);

Figure 1-4. Multiple stylesheets can be imported into a single stylesheet
that is then linked to your HTML page.

This helps to remove some complexity from your (X)HTML documents and allows you to
manage all your stylesheets in one place. Import rules need to be the first rules in a
stylesheet or they may not work properly. Because imported stylesheets are considered to
come before linked stylesheets, it’s important to remember that the rules in your linked
stylesheets will be overriding your imported rules and not the other way around.

While it is theoretically possible to import one stylesheet into a stylesheet that is itself
being imported, this type of daisy chaining or multilevel nesting is not well supported. As
such, you should probably avoid nesting imports more than two levels deep.

Very few people use Netscape 4 these days, so you probably do not need to worry too
much about this browser. You could forget the simple linked stylesheet and import your
styles instead. However, IE 5/6 for Windows have a strange quirk that affects pages using
only the import rule. When an affected page loads, it is temporarily displayed unstyled,
before the styles are finally rendered. The bug is called the “Flash of Unstyled Content”
bug, or FOUC for short. Having a link or script element in the head of your document

template.html basic.css

layout.css

typography.css

color.css

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

20

6145_Ch01 1/11/06 6:19 PM Page 20

prevents this bug, so even if you are not too worried about supporting Netscape 4, it may
still be worth linking to a basic stylesheet and then importing your styles from there.

Commenting your code

When writing your own stylesheets, you will have a good idea how they are structured,
what problems you have encountered, and why things have been done a certain way. But
if you come back to that stylesheet in 6 months, there is a good chance you will have for-
gotten much of this. Additionally, you may need to hand your CSS to somebody else for
implementation, or another developer may have to edit your code in the future. It is
therefore a good idea to comment your code.

Adding comments in CSS is very simple. A CSS comment starts with /* and ends with */.
This type of commenting is known as C style commenting as it is the type of comment
used in the C programming language. Comments can be single or multiline and can appear
anywhere within the code.

/* Body Styles */
body {
font-size: 67.5%; /* Set the font size */

}

Adding structural comments
The first thing I do when creating a new stylesheet is add a comment block at the top to
describe what the stylesheet is for, the creation date or version number, who created it,
and how to get in touch with them:

/*–––
Basic Style Sheet (for version 4 browsers)

version: 1.1
author: andy budd
email: info@andybudd.com
website: http://www.andybudd.com/
–––*/

This gives other developers a good overview of the file, allows them to see if it is current, and
gives them a means of tracking down the original author if something doesn’t make sense.

I then break the stylesheet down into sensible chunks. I usually start with general rules
such as typography, headlines, and links. Next I tackle the major sections of a page based
on how they appear in the flow of the document. This will typically include a branding sec-
tion, main content, secondary content, main nav, secondary nav, and a footer section.
Lastly, I deal with general elements that appear intermittently throughout the site. These
are usually things like box styles, form styles, and graphical buttons. Similar to the intro-
ductory comment, I use a large stylized comment header to help visually separate each
section:

/* Typography
–––*/

SETTING THE FOUNDATIONS

21

1

6145_Ch01 1/11/06 6:19 PM Page 21

Not everything naturally falls into a well-defined block, so some judgment is required.
Keep in mind that the more you can break up and objectify your code, the easier it is to
understand and the quicker you can find the rules you are looking for.

If your CSS files become very long, finding the style you want can be difficult. One way to
speed things up is to add a flag to each of your comment headers. A flag is simply an extra
character preceding your header text that does not naturally appear in your CSS files. A
search for your flag followed by the first couple of letters in your comment header will
take you right to the part of the file you’re looking for. So in this example, a search for
“=typ” will take you straight to the typography section of your stylesheet:

/* =Typography
–––*/

Because many CSS files tend to have a similar structure, you can save time by creating your
own pre-commented CSS templates to use on all your projects. You can save even more
time by adding a few common rules that you use in all of your sites, to create a sort of
prototype CSS file. That way, you will not have to reinvent the wheel each time you start a
new project. A sample prototype CSS file can be found in the code download for this book
at www.friendsofed.com.

Note to self
Sometimes you may need to use a hack or workaround to solve a particular problem. In
these cases it is a good idea to document the problem, the workaround you used, and, if
available, a URL explaining the fix:

/*
Use the star selector hack to give IE a different font size
http://www.info.com.ph/~etan/w3pantheon/style/starhtmlbug.html
*/

* html body {
font-size: 75%;

}

To make your comments more meaningful, you can use keywords to distinguish important
comments. I use TODO as a reminder that something needs to be changed, fixed, or revis-
ited later on; BUG to document a problem with the code or a particular browser; and
KLUDGE to explain a nasty workaround:

/* :TODO: Remember to remove this rule before the site goes live */
/* :KLUDGE: I managed to fix this problem in IE by setting a small
negative margin but it's not pretty */
/* :BUG: Rule breaks in IE 5.2 Mac */

You could also use the keyword TRICKY to alert other developers about a particularly com-
plicated piece of code. In programming terms, these keywords are called gotchas and can
prove very helpful in the later stages of development.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

22

6145_Ch01 1/11/06 6:19 PM Page 22

Removing comments and optimizing your stylesheets
Comments can increase the size of your CSS files quite considerably. Therefore, you may
want to strip comments from your live stylesheets. Many HTML/CSS and text editors have
a search and replace option, making it pretty easy to remove comments from your code.
Alternatively, you could use one of several online CSS optimizers such as the one found at
www.cssoptimiser.com/. Not only does an optimizer remove comments but it also strips
out whitespace, helping to shave off a few extra bytes from your code.

Some people have experimented with writing comments in PHP format and then serving
their stylesheets up as PHP. The stylesheets will get sent to the PHP parser, which will strip
out all the comments, before being sent to the browser. You can do this by setting the
MIME type for CSS files in an .htaccess file:

addtype application/x-httpd-php .css

However, you need to make sure that your CSS files are being cached or this approach will
slow down rather than increase the speed of your site. This can be done using PHP, but it
does start to get complicated—therefore, it is probably best avoided unless you are confi-
dent that you know what you are doing.

The best option is probably to enable server-side compression. If you are using an Apache
server, talk to your hosts about installing mod_gzip or mod_deflate. Many modern
browsers can handle files compressed with GZIP, and decompress them on the fly. These
Apache modules will detect whether your browser can handle such files, and if it can, send
a compressed version. Server-side compression can reduce your (X)HTML and CSS files by
around 80 percent, reducing your bandwidth and making your pages much faster to
download. If you don’t have access to these Apache modules, you still may be able to
compress your files by following the tutorial found at http://tinyurl.com/8w9rp.

Style guides

Most websites will have more than one person working on them, and larger sites can
involve several teams all working on different aspects of the site. It is possible that pro-
grammers, content managers, and other front-end developers may need to understand
how elements of your code and design function. Therefore, it is a very good idea to create
a style guide.

A style guide is a document, web page, or microsite that explains how the code and visual
design of a site are pieced together. A good style guide should start with an overview of
the site structure, file structure, and naming conventions used. It should contain detailed
information about the coding standards that designers, developers, and content editors
need to adhere to in order to maintain the quality of the site. This could include things like
the versions of XHTML/CSS to use, the chosen accessibility level, browser support details,
and general coding best practices. The style guide should detail layout and stylistic ele-
ments such as the dimensions of various elements, the size of gutters, the color palette
used, and the associated hex values. The style guide should also give details and examples
of any special CSS styles used. For instance, if you were using a class to denote feedback,
you would show what elements the class could be applied to and how those elements
would look.

SETTING THE FOUNDATIONS

23

1

6145_Ch01 1/11/06 6:19 PM Page 23

Style guides are a great way of handing a project over to those responsible for maintaining
or implementing the site. By setting down some simple guidelines, you can help ensure the
site develops in a controlled way, and help lessen the fragmentation of your styles over
time. To help you create your own style guide, an example style guide is available in this
book’s code download (see Figure 1-5).

Figure 1-5. An example style guide

Organizing your stylesheets for easy maintenance

For a simple website, you can get away with using a single CSS file. With larger and more
complicated sites, it can be a good idea to separate your styles for ease of maintenance.
How you separate your styles is a matter of choice. I generally have one CSS file for the
basic layout and another for typography and design embellishment. This way, once the lay-
out is set, I rarely have to go back and change the layout stylesheet. This also protects my
layout stylesheet from accidentally being altered and breaking.

You can abstract things further by creating a separate CSS file for color. Then, if you want
to offer different color themes, it is easy to create a new color stylesheet. If you have lots
of forms on your site, you may want to create a separate CSS file for all of your form
styles. You can then link to that file only when it is needed, thus reducing the initial down-
load overhead. If you have some pages on your site that are very distinct from the rest of
your site, you may want to consider splitting these off into their own CSS files. For
instance, if your homepage layout is very different from the rest of the site, you may want
to create a separate CSS file just for the homepage.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

24

6145_Ch01 1/11/06 6:19 PM Page 24

It’s worth bearing in mind that every CSS file means an extra call to the server. This can
cause a performance hit, so some developers prefer to have one large CSS file rather than
several smaller ones. The final choice really depends on the situation and is, to some
degree, a matter of personal preference. I tend to favor flexibility and ease of maintenance
whenever possible.

Summary
In this chapter you’ve seen how a well-structured and meaningful document can help pro-
vide a solid framework for applying your styles. You’ve learned about some of the more
advanced CSS selectors and how CSS handles conflicting rules. You’ve also seen how well-
structured and well-commented CSS files can make your life easier and increase your pro-
ductivity.

In the next chapter, you will learn about the CSS box model, how and why margins col-
lapse, and how floating and positioning really works.

SETTING THE FOUNDATIONS

25

1

6145_Ch01 1/11/06 6:19 PM Page 25

2 VISUAL FORMATTING MODEL RECAP

No boxes floatedWithout Margin Collapsing

6145_Ch02 1/11/06 5:49 PM Page 27

Three of the most important CSS concepts to grasp are floating, positioning, and the box
model. These concepts control the way elements are arranged and displayed on a page,
forming the basis of CSS layout. If you are used to controlling layout with tables, these
concepts may seem strange at first. In fact, most people will have been developing sites
using CSS for some time before they fully grasp the intricacies of the box model, the dif-
ference between absolute and relative positioning, and how floating and clearing actually
work. Once you have a firm grasp of these concepts, developing sites using CSS becomes
that much easier.

In this chapter you will learn about

The intricacies and peculiarities of the box model

How and why margins collapse

The difference between absolute and relative positioning

How floating and clearing work

Box model recap
The box model is one of the cornerstones of CSS and dictates how elements are displayed
and, to a certain extent, how they interact with each other. Every element on the page is
considered to be a rectangular box made up of the element’s content, padding, border,
and margin (see Figure 2-1).

Figure 2-1. Illustration of the box model

Padding is applied around the content area. If you add a background to an element, it will
be applied to the area formed by the content and padding. As such, padding is often used
to create a gutter around content so that it does not appear flush to the side of the back-
ground. Adding a border applies a line to the outside of the padded area. These lines
come in various styles such as solid, dashed, or dotted. Outside the border is a margin.
Margins are transparent and cannot be seen. They are generally used to control the spac-
ing between elements.

margin

border

padding

Content Area

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

28

6145_Ch02 1/11/06 5:49 PM Page 28

Padding, borders, and margins are optional and default to zero. However, many elements
will be given margins and padding by the user-agent stylesheet. You can override these
browser styles by setting the element’s margin or padding back to zero. You can do this on
a case-by-case basis or for every element by using the universal selector:

* {
margin: 0;
padding: 0;

}

In CSS, width and height refer to the width and height of the content area. Adding
padding, borders, and margins will not affect the size of the content area but will increase
the overall size of an element’s box. If you wanted a box with a 10-pixel margin and a 5-
pixel padding on each side to be 100 pixels wide, you would need to set the width of the
content to be 70 pixels (see Figure 2-2):

#myBox {
margin: 10px;
padding: 5px;
width: 70px;

}

Figure 2-2. The correct box model

Padding, borders, and margins can be applied to all sides of an element or individual sides.
Margins can also be given a negative value and can be used in a variety of techniques.

width: 70px

margin: 10px

padding: 5px

100px

10px 10px5px 5px70px

VISUAL FORMATTING MODEL RECAP

29

2

6145_Ch02 1/11/06 5:49 PM Page 29

IE/Win and the box model

Unfortunately, IE 5.x and IE 6 in quirks mode use their own, nonstandard box model.
Instead of measuring just the width of the content, these browsers take the width property
as the sum of the width of the content, padding, and borders. This actually makes a lot of
sense because in the real world boxes have a fixed size and the padding goes on the inside.
The more padding you add, the less room there would be for the content. However, despite
the logic, the fact that these versions of IE disregard the specification can cause significant
problems. For instance, in the previous example the total width of the box would only be
90 pixels in IE 5.x. This is because IE 5.x will consider the 5 pixels of padding on each side as
part of the 70-pixel width, rather than in addition to it (see Figure 2-3).

Figure 2-3. Internet Explorer’s proprietary box model
can cause elements to be smaller than intended.

Luckily, there are several ways you can tackle this issue, the details of which can be found
in Chapter 9. However, by far the best solution is to avoid the problem altogether. You can
do this by never adding padding to an element with a defined width. Instead, try adding
padding or margins to the element’s parent or children.

width: 70px

margin: 10px

padding: 5px

90px

10px 10px60px5px 5px

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

30

6145_Ch02 1/11/06 5:49 PM Page 30

Margin collapsing

Margin collapsing is a relatively simple concept. In practice, however, it can cause a lot of
confusion when you’re laying out a web page. Put simply, when two or more vertical mar-
gins meet, they will collapse to form a single margin. The height of this margin will equal
the height of the larger of the two collapsed margins.

When two elements are above one another, the bottom margin of the first element will
collapse with the top margin of the second element (see Figure 2-4).

Figure 2-4. Example of an element’s top margin collapsing with the bottom margin of
the preceding element

When one element is contained within another element, assuming there is no padding or
border separating margins, their top and/or bottom margins will also collapse together
(see Figure 2-5).

Figure 2-5. Example of an element’s top margin collapsing with the top margin of its
parent element

Before

Content

margin-top: 30px

margin-top: 20px

After

Content

margin-top: 30px} Margins collapse
to form a single

margin.

margin-bottom: 30px

Content Area

margin-top: 20px

Content Area

margin-bottom: 30px

Content Area

Content Area

} Margins collapse
to form a single

margin.

Before After

VISUAL FORMATTING MODEL RECAP

31

2

6145_Ch02 1/11/06 5:49 PM Page 31

It may seem strange at first, but margins can even collapse on themselves. Say you have an
empty element with a margin, but no border or padding. In this situation the top margin is
touching the bottom margin and they collapse together (see Figure 2-6).

Figure 2-6. Example of an element’s top margin collapsing with its bottom margin

If this margin is touching the margin of another element, it will itself collapse (see Figure 2-7).

Figure 2-7. Example of an empty element’s collapsed margin collapsing with another empty
element’s margins

This is why a series of empty paragraph elements take up very little space, as all their mar-
gins collapse together to form a single small margin.

Margin collapsing may seem strange at first, but it actually makes a lot of sense. Take a typ-
ical page of text made up of several paragraphs (see Figure 2-8). The space above the first
paragraph will equal the paragraph’s top margin. Without margin collapsing, the space
between all subsequent paragraphs will be the sum of their two adjoining top and bottom
margins. This means that the space between paragraphs will be double the space at the
top of the page. With margin collapsing, the top and bottom margins between each para-
graph collapse, leaving the spacing the same everywhere.

Figure 2-8. Margins
collapse to maintain
consistent spacing
between elements.

Without Margin Collapsing With Margin Collapsing

The space between paragraphs is
double the space at the top

The space between paragraphs is
the same as the space at the top

Before After

margin-top: 20px} All margins
collapse to form
a single margin.

margin-top: 20px

margin-bottom: 20px

margin-top: 20px

Before After

margin-top: 20px} Margins collapse
to form a single

margin.

margin-top: 20px

margin-bottom: 20px

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

32

6145_Ch02 1/11/06 5:49 PM Page 32

Margin collapsing only happens with the vertical margins of block boxes in the normal
flow of the document. Margins between inline boxes, floated, or absolutely positioned
boxes never collapse.

Positioning recap
Now that you are familiar with the box model, let’s take a look at the visual formatting and
positioning models. Understanding the nuances of both of these models is vitally impor-
tant as together they control how every element is arranged on a page.

The visual formatting model

People often refer to elements such as p, h1, or div as block-level elements. This means
they are elements that are visually displayed as blocks of content, or “block boxes.”
Conversely, elements such as strong and span are described as inline elements because
their content is displayed within lines as “inline boxes.”

It is possible to change the type of box generated by using the display property. This
means you can make an inline element such as an anchor behave like a block-level ele-
ment by setting its display property to block. It is also possible to cause an element to
generate no box at all by setting its display property to none. The box, and thus all of its
content, is no longer displayed and takes up no space in the document.

There are three basic positioning schemes in CSS: normal flow, floats, and absolute posi-
tioning. Unless specified, all boxes start life being positioned in the normal flow. As the
name suggests, the position of an element’s box in the normal flow will be dictated by that
element’s position in the (X)HTML.

Block-level boxes will appear vertically one after the other; the vertical distance between
boxes is calculated by the boxes’ vertical margins.

Inline boxes are laid out in a line horizontally. Their horizontal spacing can be adjusted
using horizontal padding, borders, and margins (see Figure 2-9). However, vertical padding,
borders, and margins will have no effect on the height of an inline box. The horizontal box
formed by a line is called a line box, and a line box will always be tall enough for all the
line boxes it contains. There is another caveat, though—setting the line height can
increase the height of this box.

Figure 2-9. Inline
elements within a
line box

Phasellus nonummy condimentum

augue line height

line box

margin padding

anonymous inline element

strong element

VISUAL FORMATTING MODEL RECAP

33

2

6145_Ch02 1/11/06 5:49 PM Page 33

In the same way that (X)HTML elements can be nested, boxes can contain other boxes.
Most boxes are formed from explicitly defined elements. However, there is one situation
where a block-level element is created even if it has not been explicitly defined. This
occurs when you add some text at the start of a block-level element like a div. Even
though you have not defined the text as a paragraph, it is treated as such:

<div>
some text
<p>Some more text</p>
</div>

In this situation, the box is described as an anonymous block box since it is not associated
with a specifically defined element.

A similar thing happens with the lines of text inside a block-level element. Say you have a
paragraph that contains three lines of text. Each line of text forms an anonymous line box.
You cannot style anonymous block or line boxes directly as there is nothing to hook on to.
However, it is useful to understand that everything you see on your screen creates some
form of box.

Relative positioning

Relative positioning is a fairly easy concept to grasp. If you relatively position an element,
it will stay exactly where it is. You can then shift the element “relative” to its starting point
by setting a vertical or horizontal position. If you set the top position to be 20 pixels, the
box will appear 20 pixels below the top of its original position. Setting the left position to
20 pixels will create a 20-pixel space on the left of the element, moving the element to the
right (see Figure 2-10).

#myBox {
position: relative;
left: 20px;
top: 20px;

}

Figure 2-10. Relatively positioning an element

top: 20px

left: 20px

position: relative

Containing Element

Box 1

Box 2

Box 3

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

34

6145_Ch02 1/11/06 5:49 PM Page 34

With relative positioning, the element continues to occupy the original space, whether or
not it is offset. As such, offsetting the element can cause it to overlap other boxes.

Absolute positioning

Relative positioning is actually considered part of the normal flow positioning model, as
the position of the element is relative to its position in the normal flow. By contrast,
absolute positioning takes the element out of the flow of the document, thus taking up no
space. Other elements in the normal flow of the document will act as though the
absolutely positioned element was never there (see Figure 2-11).

Figure 2-11. Absolutely positioning an element

An absolutely positioned element is positioned in relation to its nearest positioned ances-
tor. If the element has no positioned ancestors, it will be positioned in relation to the ini-
tial containing block. Depending on the user agent, this will either be the canvas or the
HTML element.

As with relatively positioned boxes, an absolutely positioned box can be offset from the
top, bottom, left, or right of its containing block. This gives you a great deal of flexibility.
You can literally position an element anywhere on the page.

Because absolutely positioned boxes are taken out of the flow of the document, they can
overlap other elements on the page. You can control the stacking order of these boxes by
setting a property called the z-index. The higher the z-index, the higher up the box
appears in the stack.

The main problem people have with positioning is remembering which type of
positioning is which. Relative positioning is “relative” to the element’s initial
position in the flow of the document, whereas absolute positioning is “relative”
to nearest positioned ancestor or, if one doesn’t exist, the initial container block.

Relatively Positioned Ancestor

Box 1 Box 3

top: 20px

left: 20px

position: absolute

Box 2

VISUAL FORMATTING MODEL RECAP

35

2

6145_Ch02 1/11/06 5:49 PM Page 35

Positioning an absolutely positioned element in relation to its nearest positioned ancestor
allows you to do some very interesting things. For instance, say you wanted to align a para-
graph of text at the bottom right of a large box. You could simply give the container box a
relative position and then absolutely position the paragraph in relation to this box:

#branding {
width: 700px;
height: 100px;
position: relative;

}

#branding .tel {
position: absolute;
right: 10px;
bottom: 10px;
text-align: right;

}

<div id="branding">
<p class="tel">Tel: 0845 838 6163</p>
</div>

Absolute positioning can be a useful tool when laying out a page, especially if it is done
using relatively positioned ancestors. It is entirely possible to create a design solely using
absolute positioning. For this to work, these elements need to have fixed dimensions so
you can position them where you want without the risk of overlapping.

Because absolutely positioned elements are taken out of the flow of the document, they
have no effect on boxes in the normal flow. If you were to enlarge an absolutely posi-
tioned box—by increasing the font size, for instance—the surrounding boxes wouldn’t
reflow. As such, any change in size can ruin your finely tuned layout by causing the
absolutely positioned boxes to overlap.

Fixed positioning
Fixed positioning is a subcategory of absolute positioning. The difference is that a fixed
element’s containing block is the viewport. This allows you to create floating elements that
always stay at the same position in the window. An example of this can be seen at snook.ca

Absolutely positioning a box in relation to a relatively positioned ancestor
works well in most modern browsers. However, there is a bug in IE 5.5 and IE 6
on Windows. If you try to set the position of the absolutely positioned box rela-
tive to the right or bottom of the relatively positioned box, you need to make
sure the relatively positioned box has some dimensions set. If not, IE will incor-
rectly position the box in relation to the canvas instead. You can read more
about this bug and possible fixes in Chapter 9. The simple solution is to set the
width and height of your relative box to avoid this problem.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

36

6145_Ch02 1/11/06 5:49 PM Page 36

(see Figure 2-12). The weblog comment form has been given a fixed position to keep it
anchored at the same place on screen when the page is scrolled. This really helps improve
usability and you don’t have to scroll all the way to the bottom of the page to leave a
comment.

Figure 2-12. At snook.ca, the comment field on the right side of the screen uses a fixed position to
stay at the same position in the viewport.

Unfortunately, IE 6 and below do not support fixed positioning. To get around this prob-
lem, Jonathan Snook uses JavaScript to replicate the effect in IE.

Floating

The last positioning model is the float model. A floated box can either be shifted to the
left or the right until its outer edge touches the edge of its containing box, or another
floated box. Because floated boxes aren’t in the normal flow of the document, block
boxes in the regular flow of the document behave as if the floated box wasn’t there.

As shown in Figure 2-13, when you float Box 1 to the right, it’s taken out of the flow of the
document and moved to the right until its right edge touches the right edge of the con-
taining block.

Figure 2-13. Example of an element being floated right

In Figure 2-14, when you float Box 1 to the left, it is taken out of the flow of the document
and moved left until its left edge touches the left edge of the containing block. Because it
is no longer in the flow, it takes up no space and actually sits on top of Box 2, obscuring

Box 1

Box 2

Box 3

Box 2 Box 1

Box 3

No boxes floated Box 1 floated right

VISUAL FORMATTING MODEL RECAP

37

2

6145_Ch02 1/11/06 5:49 PM Page 37

it from view. If you float all three boxes to the left, Box 1 is shifted left until it touches its
containing box, and the other two boxes are shifted left until they touch the preceding
floated box.

Figure 2-14. Example of elements being floated left

If the containing block is too narrow for all of the floated elements to fit horizontally, the
remaining floats will drop down until there is sufficient space (see Figure 2-15). If the
floated elements have different heights, it is possible for floats to get “stuck” on other
floats when they drop down.

Figure 2-15. If there is not enough available horizontal space, floated
elements will drop down until there is.

Line boxes and clearing
Line boxes next to a floated box are shortened to make room for the floated box, and flow
around the float. In fact, floats were created to allow text to flow around images (see
Figure 2-16).

Figure 2-16. Line boxes shorten when next to a float.

No boxes floated Image floated left

Line boxes shorten to make
room for the floated image

Box 1

Different height boxesNot enough horizontal space

Box 3

Box 2 Box 1

Box 3

Box 2

Box 3 gets “stuck”
on Box 1

Box 3 drops

Box 1

Box 3

Box 1 Box 2 Box 3

All three boxes floated leftBox 1 floated left

Box 2 hidden
under Box 1

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

38

6145_Ch02 1/11/06 5:49 PM Page 38

To stop line boxes flowing around the outside of a floated box, you need to apply a clear
to that box. The clear property can be left, right, both, or none, and indicates which
side of the box should not be next to a floated box. To accomplish this, enough space is
added above the cleared element’s top margin to push the element’s top border edge ver-
tically down, past the float (see Figure 2-17).

Figure 2-17. Clearing an element’s top margin to create enough vertical space for
the preceding float

As you’ve seen, floated elements are taken out of the flow of the document and have no
effect on surrounding elements. However, clearing an element essentially clears a vertical
space for all the preceding floated elements.

This can be a useful layout tool as it allows surrounding elements to make space for
floated elements. This solves the problem we saw earlier with absolute positioning where
changes in vertical height do not affect surrounding elements and can break your design.

Let’s have a look at floating and clearing in a little more detail. Say you have a picture that
you want to float to the left of a block of text. You want this picture and text to be con-
tained in another element with a background color and border. You would probably try
something like this:

.news {
background-color: gray;
border: solid 1px black;

}

.news img {
float: left;

}

.news p {
float: right;

}

<div class="news">

<p>Some text</p>
</div>

Second paragraph cleared Second paragraph cleared

Margin added to clear float

VISUAL FORMATTING MODEL RECAP

39

2

6145_Ch02_3P 3/29/06 4:24 PM Page 39

However, because the floated elements are taken out of the flow of the document, the
wrapper div takes up no space. How do you visually get the wrapper to enclose the floated
element? You need to apply a clear somewhere inside that element (see Figure 2-18).

Unfortunately, no existing element is available that we can clear so you need to add an
empty element and clear that.

.news {
background-color: gray;
border: solid 1px black;

}

.news img {
float: left;

}

.news p {
float: right;

}

.clear {
clear: both;

}

<div class="news">

<p>Some text</p>
<div class="clear"></div>
</div>

This gets the result we want, but at the expense
of adding extraneous code to our markup. Often
there will be an existing element you can apply
the clear to, but sometimes you may have to bite
the bullet and add meaningless markup for the
purpose of layout.

Instead of clearing the floated text and image, you
could choose to float the container div as well:

.news {
background-color: gray;
border: solid 1px black;
float: left;

}

.news img {
float: left;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

40

Empty clearing div

Container does not enclose floats

Floats take up no space

Container now encloses floats

Figure 2-18. Because floats take up
no space, they are not enclosed by
container elements. The addition of
an empty clearing element forces the
container element to enclose the
floats.

6145_Ch02_3P 3/29/06 4:43 PM Page 40

.news p {
float: right;

}

<div class="news">

<p>Some text</p>
</div>

This creates the desired result. Unfortunately, the next element is now going to be
affected by the float. To solve this problem, some people choose to float nearly everything
in a layout and then clear those floats using an appropriate meaningful element, often the
site footer. This helps reduce or eliminate the need for extraneous markup. However,
floating can be complicated and some older browsers may choke on heavily floated lay-
outs. As such, many people prefer to add that extra bit of markup.

Applying an overflow property of hidden or auto will automatically clear any contained
floats without the addition of extra markup. This method is not appropriate in all situa-
tions, since setting the box’s overflow property will affect how it behaves.

Lastly, some people have taken to clearing floats using CSS-generated content or
JavaScript. The basic concept for both methods is the same. Rather than add a clearing
element directly to the markup, you add it to the page dynamically. For both methods you
need to indicate where the clearing element goes, and this is usually done with the addi-
tion of a class name:

<div class="news clear">

<p> Some text</p>
</div>

Using the CSS method, you use the :after pseudo-class in combination with the content
declaration to add new content at the end of the specified existing content. In this case I’m
adding a full stop as it is a fairly small and unobtrusive character. You don’t want the new
content to take up any vertical space or be displayed on the page, so you need to set
height to 0 and visibility to hidden. Because cleared elements have space added to
their top margin, the generated content needs to have its display property set to block.
Once this is done, you can then clear your generated content:

.clear:after {
content: ".";
height: 0;
visibility: hidden;
display: block;
clear: both;

}

VISUAL FORMATTING MODEL RECAP

41

2

6145_Ch02_8P 1/2/07 12:55 PM Page 41

An explanation of the JavaScript method is beyond the scope of this book but is worth a
brief mention. Unlike the previous method, the JavaScript method works on all major
browsers when scripting is turned on. However, if you use this method, you need to make
sure that the content is still readable when scripting is turned off.

Summary
In this chapter you have learned about some of the peculiarities of the box model. You
have seen how vertical adjacent margins collapse to form a single margin, and how IE 5.x
on Windows interprets the width property differently from other browsers. You now
understand the difference between absolute and relative positioning and how useful
absolute positioning in a relative container can be. Lastly, you have seen how floats behave
in various circumstances and learned that clearing works by increasing the cleared ele-
ment’s top margin.

Now that you are armed with this knowledge, let’s start putting it to good use. In the next
section of this book, you will be introduced to a number of core CSS concepts and you’ll
see how they can be used to create a variety of useful and practical techniques. So open
your favorite text editor, and let’s get coding.

This method works in most modern browsers but fails in Internet Explorer 6 and
below. Various workarounds are available, many of which are documented at
www.positioniseverything.net/easyclearing.html. The most common of these
involves using the Holly Hack (see chapter 8) to trick IE 5-6 into applying "Layout"
(see chapter 9) and incorrectly clearing the floats.

.clear {
display: inline-block;
}
/* Holly Hack Targets IE Win only */
* html .clear {height: 1%;}
.clear {display: block;}
/* End Holly Hack */

However, due to its complexity this method may not be suitable for everybody.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

42

6145_Ch02_3P 4/5/06 1:03 PM Page 42

3 BACKGROUND IMAGES
AND IMAGE REPLACEMENT

top-left.gif

6145_Ch03 1/11/06 5:50 PM Page 43

Now that you are all up to speed with the theory, let’s start putting this into practice.
Today’s Web is a very visual medium. The humble image tag has allowed web designers to
turn dull and uninspiring documents into graphically rich experiences. Graphic designers
quickly seized on the image tag (originally intended as a way to add visual content to a
website) as a way of visually embellishing a page. In fact, if it wasn’t for the invention of
the image tag, the profession of web designer may never have evolved.

Unfortunately, we’ve used the image tag to clutter our pages with purely presentational
images. Luckily, CSS gives us the ability to display an image on a page without it being part
of the markup. This is achieved by adding an image as a background to an existing ele-
ment. Through a series of practical examples, this chapter will show you how background
images can be used to create a variety of interesting and useful techniques.

In this chapter you will learn about

Fixed- and flexible-width rounded-corner boxes

The sliding doors technique

Mountaintop corners

CSS drop shadows

PNG transparency support for Internet Explorer 5.x and above

Image replacement

Background image basics
Applying a background image is easy. Say you want your website to have a nice tiled back-
ground. You can simply apply the image as a background to the body element:

body {
background:url(pattern.gif);
}

The default browser behavior is to repeat background images horizontally and vertically so
that the image tiles across the whole of the page. For more control you can choose
whether your background image tiles vertically, horizontally, or not at all.

Gradients are very fashionable at the moment so you may want to apply a vertical gradient
to your page instead. To do this, create a tall but narrow gradient graphic. You can then
apply this graphic to the body of the page and let it tile horizontally:

body {
background: #ccc url(gradient.gif) repeat-x;
}

Because the gradient has a fixed height, it will stop abruptly if the content of the page is
longer than the height of the image. You could choose to create a really long image, pos-
sibly one that fades to a fixed color. However, it is always difficult to predict how long a

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

44

6145_Ch03 1/11/06 5:50 PM Page 44

page will become. Instead, simply add a background color as well. Background images
always sit on the top of the background color, so when the image runs out the color will
be displayed. If you choose a background color that is the same as the bottom of the gra-
dient, the transition between image and background color will be seamless.

Tiling images can be useful in some situations. However, most of the time, you will want to
add non-tiled images to your page. For instance, say you want your web page to start with
a large branding image. You could simply add the image directly into the page, and in
many situations this would be the correct thing to do. Yet if the image contains no infor-
mation and is purely presentational, you may want to separate the image from the rest of
your content. You can do this by creating a hook for the image in your HTML and applying
the image using CSS. In the following example I have added an empty div to the markup
and given it an ID of branding. You can then set the dimensions of the div to be the same
as the branding image, apply it as a background, and tell it not to repeat.

#branding {
width: 700px;
height: 200px;
background:url(/images/branding.gif) no-repeat;

}

Lastly, it is possible to set the position of your background image. Say you want to add a
bullet to every headline on your site, as shown in Figure 3-1. You could do something like
this:

h1 {
padding-left: 30px;
background: url(/images/bullet.gif) no-repeat left center;

}

The last two keywords indicate the positioning of the image. In this case, the image will be
positioned to the left of the element and vertically centered. As well as using keywords,
you can set a background image’s position using units such as pixels or percentages.

If you set a background position using pixels, the top-left corner of the image is positioned
from the top-left corner of the element by the specified number of pixels. So if you were
to specify a vertical and horizontal position of 20 pixels, the top-left corner of the image
will appear 20 pixels from the top-left corner of the element. However, background posi-
tioning using percentages works slightly differently. Rather than positioning the top-left
corner of the background image, percentage positioning uses a corresponding point on
the image. So if you set a vertical and horizontal position of 20 percent, you are actually

Figure 3-1. Creating a
bullet using a background
image

My Headline

padding-left: 30px

left center

BACKGROUND IMAGES AND IMAGE REPLACEMENT

45

3

6145_Ch03 1/11/06 5:50 PM Page 45

positioning a point 20 percent from the top left of the image, 20 percent from the top left
of the parent element (see Figure 3-2).

Figure 3-2. When positioning background images using pixels, the top-left corner of
the image is used. When positioning using percentages, the corresponding position
on the image is used.

If you want to position the previous bullet example using percentages instead of keywords,
setting the vertical position to 50 percent would vertically center the bullet image:

h1 {
padding-left: 30px;
background: url(/images/bullet.gif) no-repeat 0 50%;

}

The specification says that you are not supposed to mix units such as pixels or percentages
with keywords. This seems like a nonsensical rule and one that many modern browsers
deliberately ignore. However, mixing units and keywords fails to work on certain browsers
and will most likely invalidate your page. As such, it is best not to mix units with keywords
at this time.

While background images are a simple concept to grasp, they form the basis of many
advanced CSS techniques.

Rounded-corner boxes
One of the first criticisms leveled against CSS-based designs was that they were very
square and boxy. To get around this, people started creating designs that incorporated
more organic curved shapes. Rounded-corner boxes very quickly became one of the most
sought-after CSS techniques around. There are various ways of creating rounded-corner
boxes. Each approach has its strengths and weaknesses, and the one you choose depends
largely on your circumstances.

20px 20%

20px 20%

(20%, 20%)x

Background positioning using px Background positioning using %

(0,0)x

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

46

6145_Ch03 1/11/06 5:50 PM Page 46

Fixed-width rounded-corner boxes

Fixed-width rounded-corner boxes are the easiest to create. They require only two images:
one for the top of the box and one for the bottom. For example, say you want to create a
box style like the one in Figure 3-3.

The markup for the box looks something like this:

<div class="box">
<h2>Headline</h2>
<p>Content</p>

</div>

In your favorite graphics package you need to create two images like those in Figure 3-4:
one for the top of the box and one for the bottom. The code and images for this and all
the other examples in this book can be downloaded from www.friendsofed.com.

Figure 3-4. The top and bottom curve graphics

You then apply the top image to the heading element and the bottom image to the bot-
tom of the box div. Because this box style just has a solid fill, you can create the body of
the box by adding a background color to the box div.

.box {
width: 418px;
background: #effce7 url(images/bottom.gif) no-repeat left bottom;

}

.box h2 {
background: url(images/top.gif) no-repeat left top;

}

Figure 3-3. A simple
rounded-corner box style

BACKGROUND IMAGES AND IMAGE REPLACEMENT

47

3

6145_Ch03 1/11/06 5:50 PM Page 47

You will not want your content to butt up against the sides of the box, so you also need to
add some padding to the elements inside the div:

.box h2 {
padding: 10px 20px 0 20px;

}

.box p {
padding: 0 20px 10px 20px;

}

This is great for a simple box with a solid color and no borders. But what if you want to
create a fancier style, such as the one in Figure 3-5?

You can actually use the same approach, but this time, instead of setting a background
color on the box, you can set a repeating background image. For this to work you will
need to apply the bottom curve image to another element. In this case, I used the last
paragraph element in the box:

.box {
width: 424px;
background: url(images/bg-tile.gif) repeat-y;

}

.box h2 {
background: url(images/bg-top.gif) no-repeat left top;
padding-top: 20px;

}

.box .last {
background: url(images/bg-bottom.gif) no-repeat left bottom;
padding-bottom: 20px;

}

.box h2, .box p {
padding-left: 20px;
padding-right: 20px;

}

Figure 3-5. Example
of a stylized rounded-
corner box

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

48

6145_Ch03 1/11/06 5:50 PM Page 48

<div class="box">
<h2>Headline</h2>
<p class="last">Content</p>

</div>

Figure 3-6 shows the resulting styled box. Because no height has been given to the box, it
will expand vertically as the text size is increased.

Figure 3-6. Styled fixed-width box. The height of the box expands as the text size is increased.

Flexible rounded-corner box
The previous examples will all expand vertically if you increase your font size. However,
they do not expand horizontally as the width of the box has to be the same as the width
of the top and bottom images. If you want to create a flexible box, you will need to take a
slightly different approach. Instead of the top and bottom curves consisting of a single
image, they need to be made up of two overlapping images (see Figure 3-7).

Figure 3-7. Diagram showing how the top graphics expand to form a flexible
rounded-corner box

top-left.gif

top-right.gif

As the box expands, top-right.gif
covers top-left.gif

di v.box

Box expands vertically
as text is resized

BACKGROUND IMAGES AND IMAGE REPLACEMENT

49

3

6145_Ch03 1/11/06 5:50 PM Page 49

As the box increases in size, more of the larger image will be revealed, thus creating the
illusion that the box is expanding. This concept is sometimes referred as the sliding doors
technique because one image slides over the other, hiding it from view. More images are
required for this method to work, so you will have to add a couple of extra, nonsemantic
elements to your markup.

<div class="box">
<div class="box-outer">
<div class="box-inner">
<h2>Headline</h2>
<p>Content</p>
</div>

</div>
</div>

This method requires four images: the top two images make up the top curve, and the
bottom two images make up the bottom curve and the body of the box (see Figure 3-8).
As such, the bottom images need to be as tall as the maximum height of the box.
We will name these images top-left.gif, top-right.gif, bottom-left.gif, and
bottom-right.gif.

Figure 3-8. The images required to create the flexible rounded-corner box

First you apply the bottom-left.gif to the main box div and bottom-right.gif to the
outer div. Next you apply top-left.gif to the inner div and finally top-right.gif to
the heading. Lastly, it is a good idea to add some padding to space out the contents of the
box a little.

.box {
width: 20em;
background: #effce7 url(images/bottom-left.gif) ➥

no-repeat left bottom;
}

top-left.gif top-right.gif

bottom-left.gif bottom-right.gif

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

50

6145_Ch03_3P 4/3/06 2:41 PM Page 50

.box-outer {
background: url(images/bottom-right.gif) no-repeat right bottom;
padding-bottom: 5%;

}

.box-inner {
background: url(images/top-left.gif) no-repeat left top;

}

.box h2 {
background: url(images/top-right.gif) no-repeat right top;
padding-top: 5%;

}

.box h2, .box p {
padding-left: 5%;
padding-right: 5%;

}

In this example I have set the width of the box in ems, so increasing the text size in your
browser will cause the box to stretch (see Figure 3-9). You could, of course, set the width
in percentages, and have the box expand or contract depending on the size of the browser
window. This is one of the main principles behind elastic and flexible layouts, something I
will be covering later in the book.

Figure 3-9. Flexible rounded-corner boxes expand both horizontally and vertically as the text is
resized.

The addition of a couple of extra nonsemantic elements is not ideal. If you only
have a couple of boxes it is probably something you can live with. But if you are
concerned you could always add the extra elements using JavaScript (and the
DOM) instead. For more details on this topic, see the excellent article by Roger
Johansson of 456 Berea Street at http://tinyurl.com/82y8l.

BACKGROUND IMAGES AND IMAGE REPLACEMENT

51

3

6145_Ch03 1/11/06 5:50 PM Page 51

Mountaintop corners

Mountaintop corners are a simple yet very flexible concept, first coined by Dan Cederholm
of www.simplebits.com, author of the best-selling friends of ED book Web Standards
Solutions (friends of ED, 2004). Suppose you want to create a variety of different-colored
rounded-corner boxes. Using the previous methods you’d have to create different corner
graphics for each color theme. This may be okay if you only had a couple of themes, but
say you wanted to let your users create their own themes? You’d probably have to create
the corner graphics dynamically on the server, which could get very complicated.

Fortunately, there is another way. Instead of creating colored corner graphics, you can cre-
ate curved, bitmap corner masks (see Figure 3-10). The masked area maps to the back-
ground color you are using while the actual corner area is transparent. When placed over
a colored box, they give the impression that the box is curved (see Figure 3-11).

As these corner masks need to be bitmapped, subtle curves work best. If you try to use a
large curve, it will appear jagged and unsightly.

The basic markup is similar to the previous method; it requires four elements to apply the
four corner masks to:

<div class="box">
<div class="box-outer">
<div class="box-inner">
<h2>Headline</h2>
<p>Content</p>
</div>

</div>
</div>

The CSS is also very similar:

.box {
width: 20em;
background: #effce7 url(images/bottom-left.gif) ➥

no-repeat left bottom;
}

Figure 3-10. Bitmapped
corner mask. The white
mask will cover the
background color,
creating a simple
curved effect.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

52

6145_Ch03 1/11/06 5:50 PM Page 52

.box-outer {
background: url(images/bottom-right.gif) no-repeat right bottom;
padding-bottom: 5%;

}

.box-inner {
background: url(images/top-left.gif) no-repeat left top;

}

.box h2 {
background: url(images/top-right.gif) no-repeat right top;
padding-top: 5%;

}

.box h2, .box p {
padding-left: 5%;
padding-right: 5%;

}

The main difference, apart from using different images, is the addition of a background
color on the main box div. If you want to change the color of the box, you can simply
change the color value in the CSS without having to re-create any new graphics. This
method is only suitable for creating very simple boxes; however, it provides a great deal of
flexibility and can be used over and over again on different projects.

Drop shadows
Drop shadows are a popular and attractive design feature, adding depth and interest to an
otherwise flat design. Most people use a graphics package like Photoshop to add drop
shadows directly to an image. However, using the power of CSS it is possible to apply sim-
ple drop shadow effects without altering the underlying image.

There are various reasons you may want to do this. For instance, you may allow nontech-
nical people to administer your site who have no experience using Photoshop, or you may
simply be uploading images from a location where you do not have access to Photoshop,
such as an Internet cafe. By having a predefined drop shadow style, you can simply upload
a regular image and have it displayed on your site with a drop shadow.

Figure 3-11. Mountaintop
corner box

BACKGROUND IMAGES AND IMAGE REPLACEMENT

53

3

6145_Ch03 1/11/06 5:50 PM Page 53

One of the nicest benefits of using CSS is that it is nondestructive. If you decide that you
want to remove the drop shadow effect later on, you can simply alter a couple of lines in
your CSS files rather than having to reprocess all of your images.

Easy CSS drop shadows

This very simple drop shadow method was first described by Dunstan Orchard of
www.1976design.com. It works by applying a large drop shadow graphic to the background
of a wrapper div. The drop shadow is then revealed by offsetting the image using negative
margins.

The first thing you need to do is create the drop shadow graphic. I created my drop
shadow graphic using Adobe Photoshop. Create a new Photoshop file, the dimensions of
which are as large as the maximum size of your image. I created a file that’s 800 pixels by
800 pixels just to be on the safe side. Unlock the background layer and fill it with the color
you want your shadow to sit on. In my case I simply kept the background layer white.
Create a new layer and fill it with white. Now move this layer up and left by 4 or 5 pixels
and then apply a 4- or 5-pixel-wide drop shadow to this layer. Save this image for web and
call it shadow.gif (see Figure 3-12).

The markup for this technique is very simple:

<div class="img-wrapper"><img src="dunstan.jpg" width="300"➥

height="300" alt="Dunstan Orchard" /></div>

Figure 3-12. The 800✕800
shadow.gif zoomed in so you
can see the 5-pixel drop
shadow

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

54

6145_Ch03 1/11/06 5:50 PM Page 54

To create the effect, you first need to apply your shadow graphic to the background of the
wrapper div. Because divs are block-level elements, they stretch horizontally, taking up all
the available space. In this situation we want the div to wrap around the image. You can
do this by explicitly setting a width for the wrapper div, but doing so reduces the useful-
ness of this technique. Instead, you can float the div, causing it to “shrink-wrap” on mod-
ern browsers, with one exception: IE 5.x on the Mac. You may want to hide these styles
from IE 5.x on the Mac. For more information on hiding rules from various browsers, see
Chapter 8, which discusses hacks and filters.

.img-wrapper {
background: url(images/shadow.gif) no-repeat bottom right;
clear: right;
float: left;

}

To reveal the shadow image and create the drop shadow effect (see Figure 3-13), you need
to offset the image using negative margins:

.img-wrapper img {
margin: -5px 5px 5px -5px;

}

Figure 3-13. Image with
drop shadow applied

It is important to keep the code on one line and not separate the div and the
image using whitespace. IE 5.5 has a whitespace bug that will cause a gap
between the image and the drop shadow if your code is on separate lines.

BACKGROUND IMAGES AND IMAGE REPLACEMENT

55

3

6145_Ch03_3P 3/29/06 4:45 PM Page 55

You can create a good, fake photo border effect by giving the image a border and some
padding (see Figure 3-14):

.img-wrapper img {
background-color: #fff;
border: 1px solid #a9a9a9;
padding: 4px;
margin: -5px 5px 5px -5px;

}

Figure 3-14. The final result

This works for most modern, standards-compliant browsers. However, we need to add in a
couple of simple rules to get it working correctly in IE 6:

.img-wrapper {
background: url(images/shadow.gif) no-repeat bottom right;
clear: right;
float: left;
position: relative;

}

.img-wrapper img {
background-color: #fff;
border: 1px solid #a9a9a9;
padding: 4px;
display: block;
margin: -5px 5px 5px -5px;
position: relative;

}

The drop shadow effect now works in IE 6. The padding on the image does not show up in
IE 5.x, but this is a relatively minor, presentational issue and one you can safely ignore.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

56

6145_Ch03_3P 3/29/06 4:47 PM Page 56

Drop shadows a la Clagnut

Richard Rutter of www.Clagnut.com came up with a similar method for creating drop
shadows. Instead of using negative margins, his technique uses relative positioning to
offset the image:

.img-wrapper {
background: url(images/shadow.gif) no-repeat bottom right;
float:left;
line-height:0;

}

.img-wrapper img {
background:#fff;
padding:4px;
border:1px solid #a9a9a9;
position:relative;
left:-5px;
top:-5px;

}

The padding on the image still does not display in IE 5.x, but in general browser support
for this method is good.

Fuzzy shadows

The preceding methods provide a simple way to create a drop shadow effect. However,
the one major criticism is the drop shadow’s hard edge. If we were creating the effect in a
graphics package like Photoshop the edges would fade into the background, creating a
much more natural look. You can see a comparison of these two effects in Figure 3-15.

Figure 3-15. Some people don’t like the hard edge the preceding techniques create,
preferring a more photorealistic technique.

BACKGROUND IMAGES AND IMAGE REPLACEMENT

57

3

6145_Ch03 1/11/06 5:50 PM Page 57

Luckily you can re-create this effect with the clever use of PNGs, masking, and the addition
of a nonsemantic div. This method works by creating a PNG with alpha transparency to
mask the edges of the drop shadow graphic.

First you need to make the masking PNG. Create a new Photoshop file that’s 800 pixels by
800 pixels. Delete the contents of the background layer and then make a 5-pixel-wide
selection at the right edge of the screen. Fill this with a gradient from white to transparent.
Make a 5-pixel-high selection at the top of the page and again, fill this with your gradient.
You should end up with a white, fuzzy border along the top and left of your document, as
shown in Figure 3-16. Now save this as a 24-bit PNG and name the file mask.png.

Figure 3-16. The transparent edges of this PNG will mask the
corners of the shadow graphic, creating nice soft corners.

Unfortunately, older versions of IE do not support PNG alpha transparency. To deal with
these browsers, you need to create an alternative graphic. In this case I have created a sim-
ple GIF mask that has a solid white 5-pixel left and top fill.

The markup for this technique looks like this:

<div class="img-wrapper">
<div>

</div>
</div>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

58

6145_Ch03 1/11/06 5:50 PM Page 58

To create this effect, you first need to apply the shadow graphic to the img-wrapper div,
aligning it to the bottom right:

.img-wrapper {
background: url(images/shadow.gif) no-repeat right bottom;
float: left;

}

Next you apply the masking image to the top right of the inner div. This lays the mask
image over the top of the shadow image, masking the hard left and top edges, and creat-
ing a nice soft edge. At the moment both of these background images are covered by the
main image. To create the offset you simply apply some padding to the bottom and right
of the inner div:

.img-wrapper div {
background: url(images/mask.png) no-repeat left top !important;
background: url(images/mask.gif) no-repeat left top;
padding: 0 5px 5px 0;

}

You will notice that I have applied both the PNG and the GIF to this rule. This is to accom-
modate both newer browsers that support PNG alpha transparency, as well as versions of
IE that do not. Using a hack called the !important hack, the PNG will be displayed by more
modern browsers, while IE users will be presented with the GIF. For more information on
this hack, refer to Chapter 8.

IE 5.2 on the Mac doesn’t “shrink-wrap” floated elements if they contain a block-level ele-
ment. To get around this problem, we can simply float the second div as well as the first:

.img-wrapper div {
background: url(images/mask.png) no-repeat left top !important;
background: url(images/mask.gif) no-repeat left top;
padding: 0 5px 5px 0;
float: left; /* :KLUDGE: Fixes problem in IE5.2/Mac */

}

Lastly, we add the border effect to the image element:

.img-wrapper img {
background-color: #fff;
border: 1px solid #a9a9a9;
padding: 4px;

}

BACKGROUND IMAGES AND IMAGE REPLACEMENT

59

3

6145_Ch03 1/11/06 5:50 PM Page 59

Bringing all these steps together, the complete CSS looks like this:

.img-wrapper {
background: url(images/shadow.gif) no-repeat right bottom;
float: left;

}

.img-wrapper div {
background: url(images/mask.png) no-repeat left top !important;
background: url(images/mask.gif) no-repeat left top;
padding: 0 5px 5px 0;
float: left; /* :KLUDGE: Fixes problem in IE5.2/Mac */

}

.img-wrapper img {
background-color: #fff;
border: 1px solid #a9a9a9;
padding: 4px;

}

And the final effect should look like Figure 3-17.

If you wanted, you could leave this effect here, serving up a PNG to good browsers and a
GIF to everything else. Unfortunately, as we all know, Internet Explorer has a pretty big
market share, so very few people would actually get to see your fuzzy drop shadow.

Luckily, IE 5.5 and above has some proprietary CSS that forces PNG transparency:

filter:progid:DXImageTransform.Microsoft.AlphaImageLoader➥

(src='images/mask.png', sizingMethod='crop');

Figure 3-17.
The final effect

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

60

6145_Ch03 1/11/06 5:50 PM Page 60

You could add this code to the existing CSS file and hide it from good browsers using an
IE-specific hack. However, it would invalidate your CSS file. Also, you should try to avoid
using hacks unless absolutely necessary. Instead, it makes more sense to put your rule in a
separate CSS file and then hide it from everything other than IE. To do this, create a new
CSS file called ie55.css and add the following code:

.img-wrapper div {
filter:progid:DXImageTransform.Microsoft.AlphaImageLoader➥

(src='img/shadow2.png', sizingMethod='crop');
background: none;

}

The first rule uses IE’s proprietary AlphaImageLoader filter to display the PNG with alpha
transparency in IE 5.5 and above. The original background image will still be displayed, so
the second rule simply hides the original background image.

Internet Explorer has another piece of proprietary code called a conditional comment that
will let you serve up a particular stylesheet to specific versions of IE. In this case, you only
want IE 5.5 and higher to see the new stylesheet, so you can place the following code in
the head of the page:

<!--[if gte ie 5.5000]>
<link rel="stylesheet" type="text/css" href="ie55.css"/>
<![endif]-->

And that is it. All modern browsers as well as IE 5.5 and above will display a nice, faded-
corner drop shadow. Everything else will be presented with a hard-corner drop shadow.

The concept of creating a basic page that works in all browsers, and then adding advanced
styling or functionality for more modern browsers, is known as progressive enhancement.
Conversely, ensuring that a page’s style or functionality doesn’t cause adverse effects in
older browsers is known as graceful degradation. These are two very important concepts
in standards-based design.

Onion skinned drop shadows

The last drop shadow method I am going to demonstrate uses a very similar technique to
the rounded-corner box methods covered earlier. However, instead of using a mask to
cover the ends of the shadow, you create two end shadow GIFs and lay them over the top
of the hard ends of the main shadow graphic. To achieve this, you will need to add two
extra nonsemantic divs to your markup to act as hooks for these images.

Don’t worry too much about conditional comments at this stage; you will learn
all about them in detail in Chapter 8.

BACKGROUND IMAGES AND IMAGE REPLACEMENT

61

3

6145_Ch03_3P 3/29/06 4:48 PM Page 61

The basic HTML will look like this:

<div class="img-wrapper">
<div class="img-outer">
<div class="img-inner">
<img src="images/dunstan.jpg" width="300" height="300" ➥

alt="Dunstan" />
</div>
</div>
</div>

As before, you apply the main shadow image as a background of the main div:

.img-wrapper {
background:url(images/shadow.gif) no-repeat right bottom;
float: left;

}

And as before, you float the div so that it shrink-wraps.

Now you can apply the bottom-left corner to the bottom left of the outer div and the
top-right corner to the top right of the inner div. The addition of some bottom and left
padding to the inner div creates the drop effect. To make sure that the main image wrap-
per shrink-wraps in IE 5.2 on the Mac, you also need to float both these divs:

.img-outer {
background:url(images/bottom-left2.gif) no-repeat left bottom;
float: left; /* :KLUDGE: Fixes problem in IE5.2/Mac */

}

.img-inner {
background:url(images/top-right2.gif) no-repeat top right;
padding: 0 5px 5px 0;
float: left; /* :KLUDGE: Fixes problem in IE5.2/Mac */

}

And lastly, as before, you can add a border and some padding to the image to create a
nice photo-style frame:

.img-wrapper img {
background-color: #fff;
border: 1px solid #a9a9a9;
padding: 4px;
display: block;

}

The final CSS looks like this:

.img-wrapper {
background:url(images/shadow.gif) no-repeat right bottom;
float: left;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

62

6145_Ch03 1/11/06 5:50 PM Page 62

.img-outer {
background:url(images/bottom-left2.gif) no-repeat left bottom;
float: left; /* :KLUDGE: Fixes problem in IE5.2/Mac */

}

.img-inner {
background:url(images/top-right2.gif) no-repeat top right;
padding: 0 5px 5px 0;
float: left; /* :KLUDGE: Fixes problem in IE5.2/Mac */

}

.img-wrapper img {
background-color: #fff;
border: 1px solid #a9a9a9;
padding: 4px;
display: block;

}

This method is very simple to understand and creates drop shadows that work on a wide
range of browsers. The downside is the addition of two extra, nonsemantic divs. These are
needed because CSS does not currently allow you to apply multiple background images to
an element. CSS 3 will provide us with this ability in the future, so the use of multiple ele-
ments is just a transitional approach, and it should be quite easy to strip this extra markup
out of your documents in the future. If you are concerned with the purity of your markup,
you could always add these extra elements using JavaScript or generated content.

Image replacement
HTML text is great. Search engines can read it, you can copy and paste it, and it enlarges if
you increase the text size in your browser. It is therefore a good idea to use HTML text
instead of text as images wherever possible. Unfortunately, web designers have only a lim-
ited selection of fonts to play with. Also, while you can control your typography to a cer-
tain extent using CSS, some things just are not possible with live text. Because of this, there
are occasions, usually for branding reasons, when you will want to use images of text
instead.

Rather than embed these images directly in the page, CSS authors came up with the idea
of image replacement. Essentially you add your text to the document as normal, and then,
using CSS, you hide the text and display a background image in its place. That way, search
engines still have the HTML text to find, and the text will be available if you disable CSS.

This seemed like a great idea for a while, until various flaws emerged. Some of the more
popular methods are inaccessible to screen readers, and most do not work with images
turned off but CSS turned on. As a result, many CSS authors have stopped using image
replacement methods and have reverted to using plain text. While I advocate avoiding
image replacement where possible, I still believe there can be situations where it is appro-
priate, such as when you need to use a particular font because of corporate branding
guidelines. To do this, you should have a good grasp of the various techniques available
and understand their limitations.

BACKGROUND IMAGES AND IMAGE REPLACEMENT

63

3

6145_Ch03 1/11/06 5:50 PM Page 63

Fahrner Image Replacement (FIR)

Created by Todd Fahrner, FIR is the original, and probably the most popular, image replace-
ment technique. I am going to explain this method because of its historical significance and
because it is one of the easiest methods to understand. However, this method has some seri-
ous accessibility implications, which I will come to in a moment, and should thus be avoided.

The basic concept is very simple. You wrap the text you want to replace in a span tag:

<h2>
Hello World

</h2>

You then apply your replacement image as a background image to the heading element:

h2 {
background:url(hello_world.gif) no-repeat;
width: 150px;
height: 35px;

}

and hide the contents of the span by settings its display value to none:

span {
display: none;

}

This method works like a charm, but it is this last rule that causes problems. Many of the
most popular screenreaders ignore elements that have their display value set to none or
hidden. Therefore, they will completely ignore this text, causing a huge accessibility problem.
So a technique intended to improve the accessibility of a site actually has the opposite
effect. For this reason it is best not to use this technique.

Phark

Mike Rundle of www.phark.net invented a screenreader-friendly image replacement tech-
nique that has the added benefit of dropping the extra, nonsemantic div:

<h2>
Hello World

</h2>

Instead of using the display property to hide the text, the Phark method applies a very
large, negative text indentation to the headline:

h2 {
text-indent: -5000px;
background:url(hello_world.gif) no-repeat;
width: 150px;
height:35px;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

64

6145_Ch03 1/11/06 5:50 PM Page 64

This method works well and solves the screenreader issue. However, as with the FIR
method, this method does not work when images are turned off but CSS is turned on. This
is an edge case and probably only applicable to people on very slow connections or those
using their cell phones as a modem. There is an argument that site visitors do have the
ability to turn images on and they just choose not to. However, it is worth bearing in mind
that certain people may not see the replaced text so it is best to avoid using this method
for crucial information or navigation.

Gilder/Levin method

This method, created jointly by Tom Gilder and Levin Alexander, is probably the most
robust method available. It works well with screenreaders and allows the text to show up
when images are off but CSS is on. It does this by layering an image over the text rather
than hiding the text. That way, when images are turned off, you simply see the underlying
text.

To use this technique, you need to add an additional, empty span inside the element you
wish to replace:

<h2>
Hello World

</h2>

You then set the dimensions of the element to equal the dimensions of your image, and
set the position of the element to relative:

h2 {
width: 150px;
height: 35px;
position: relative;

}

This sets up a new positioning context for the enclosed span element, allowing you to
position it absolutely over the text. When you set the dimensions to be 100 percent of the
parent element, and apply your replacement image as a background on the span, the
replaced text will be completely covered by the image:

h2 span {
background: url(hello_world.gif) no-repeat;
position: absolute;
width: 100%;
height: 100%;

}

When using this technique, you have to use an image with a solid background; otherwise
the text will show through. The downside of this technique is the addition of a nonseman-
tic span.

BACKGROUND IMAGES AND IMAGE REPLACEMENT

65

3

6145_Ch03 1/11/06 5:50 PM Page 65

Inman Flash Replacement (IFR)
and Scalable Inman Flash Replacement (sIFR)

One of the main problems image replacement tries to solve is the lack of fonts available
on most computers. Rather than swap the text out with images of text, Mike Davidson and
Shaun Inman took an altogether more inventive approach.

Flash allows you to embed fonts into a SWF file, so instead of swapping the text out for an
image, they decided to swap the text out and replace it with a Flash file. The swapping is
done using JavaScript by looping through the document and grabbing any text within a par-
ticular element or with a particular class name. The JavaScript then swaps the text for a
small Flash file. The really clever part comes next. Rather than creating a separate Flash file
for each chunk of text, this technique places the swapped text back into a single, duplicated
Flash file. Thus, all you need to do to trigger your image replacement is add a class, and the
combination of Flash and JavaScript will do the rest. Another benefit is that the text in Flash
files can be made selectable, meaning that it can be copied and pasted with ease.

Shaun Inman released his Flash image replacement method and dubbed it “Inman Flash
Replacement,” or IFR for short. IFR is a very lightweight method. Details about this
method, including the source code, can be found at www.shauninman.com/plete/2004/
04/ifr-revisited-and-revised.

Mike Davidson built extensively on this method, creating the Scalable Inman Flash
Replacement (sIFR) method. This method extends IFR by allowing things such as multiline
text replacement and text resizing.

To use sIFR on your site, you first need to download the latest version from
www.mikeindustries.com/sifr. Installing sIFR on your site is fairly simple, although it’s
worth reading through the documentation first. The first thing you need to do is open the
Flash file, embed the font you want to use, and export the movie. For sIFR to work prop-
erly, you next need to apply the enclosed print and screen styles, or create your own. Now
add the sifr.js JavaScript file to every page you want sIFR to work on. This file is highly
configurable and allows you to specify which elements to replace, the text color, padding,
case, and a variety of other stylistic elements. Once you are done, upload all the files to
your server and watch your tired old fonts be replaced with dynamic Flash content.

The main problem with these techniques involves load times. The pages have to load fully
before JavaScript can replace the text. Consequently, there is usually a brief flicker before
all the text has been replaced with the Flash equivalent (see Figure 3-18).

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

66

6145_Ch03 1/11/06 5:50 PM Page 66

Figure 3-18. Notice how the headlines at fortymedia.com only display once the page has
loaded. This is a sure sign that sIFR is being used on this site.

Although it is not a huge problem, it is noticeable and can give the impression that the
page is loading slowly. Also, some pages can feel a little sluggish if there is a lot of Flash
replacement going on. It’s a good idea to keep any replacement to a minimum and limit
this technique to main headlines only.

Summary
In this chapter you have learned how background images can be applied to elements to
produce a variety of interesting techniques, such as flexible rounded-corner boxes and
pure CSS drop shadows. You have seen how to force PNG support in Internet Explorer
along with several methods of image replacement.

In the next chapter, you will learn how background images and links can be combined to
create some interesting interactive effects.

BACKGROUND IMAGES AND IMAGE REPLACEMENT

67

3

6145_Ch03 1/11/06 5:50 PM Page 67

4 STYLING LINKS

6145_Ch04 1/11/06 5:51 PM Page 69

The humble anchor link is the foundation of the World Wide Web. It is the mechanism that
allows web pages to interconnect and people to explore and navigate. The default styling
for anchor links is fairly uninspiring, but with a little sprinkling of CSS you can do some
amazing things.

In this chapter you will learn about

Ordering your link selectors based on the cascade

Creating stylized link underlines

Styling external links using attribute selectors

Making links behave like buttons

Creating visited-link styles

Creating pure CSS tooltips

Simple link styling
The easiest way to style a link is to use the anchor type selector. For instance, this rule will
make all anchors red:

a {color: red;}

However, anchors can act as internal references as well as external links, so using a type
selector is not always ideal. Take this situation, for example. The first anchor contains a
fragment identifier, and when the user clicks that anchor, the page will jump to the second
named anchor:

<p>Skip to main content</p>
...
<h1>Welcome</h1>

While you probably only want the link to be styled red, the contents of the headline will
be styled red also. To avoid this, CSS has two special selectors called link pseudo-class
selectors. The :link pseudo-class selector is used to target links that have not been
visited, and the :visited pseudo-class selector is used to target visited links. So in this
example all unvisited links will be blue and all visited links will be green:

a:link {color: blue;} /* Makes unvisited links blue */
a:visited {color: green;} /* Makes visited links green */

The other two selectors you can use for styling links are the :hover and :active dynamic
pseudo-class selectors. The :hover dynamic pseudo-class selector is used to target ele-
ments when they are hovered over, and the :active dynamic pseudo-class selector targets
elements when they are activated. In the case of links, activation occurs when the link is
clicked. So in this example, links will turn red when hovered over or clicked:

a:hover, a:active { color: red;}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

70

6145_Ch04 1/11/06 5:51 PM Page 70

One of the first things most people learn to use these selectors for is turning off the
underline for links, and then turning them back on when they are hovered over or clicked.
This can be done by setting the text-decoration property to none for unvisited and vis-
ited links, and to underline for hovered or active links:

a:link, a:visited {text-decoration: none;}
a:hover, a:active {text-decoration: underline;}

In the previous example the order of the selectors is very important. If the order is
reversed, the hover and active styles won’t work:

a:hover, a:active {text-decoration: underline;}
a:link, a:visited {text-decoration: none;}

The reason for this is the cascade. In Chapter 1 you learned that when two rules have the
same specificity, the last rule to be defined wins out. In this situation, both rules have the
same specificity so the :link and :visited styles will override the :hover and :active
styles. To make sure this doesn’t happen, it’s a good idea to apply your link styles in the
following order:

a:link, a:visited, a:hover, a:active

An easy way to remember this order is the phonetic LoVe:HAte, where L stands for link, V
stands for visited, H stands for hover, and A stands for active.

Fun with underlines
From a usability and accessibility standpoint, it is important that your links are distinguish-
able by some means other than color. The reason for this is that many people with visual
impairments find it difficult to distinguish between poorly contrasting colors, especially at
small text sizes. For instance, people with color blindness cannot distinguish between cer-
tain color combinations with similar levels of brightness or saturation. Because of this,
links are underlined by default.

Designers tend to dislike link underlines as they add too much weight and visual clutter to
a page. If you decide to remove link underlines, you could choose to make links bold
instead. That way your page will look less cluttered, but the links will still stand out:

a:link, a:visited {
text-decoration: none;
font-weight: bold;

}

You can then reapply the underlines when the links are hovered over or activated, rein-
forcing their interactive status:

a:hover, a:active {
text-decoration: underline;

}

STYLING LINKS

71

4

6145_Ch04 1/11/06 5:51 PM Page 71

However, it is possible to create a low-impact underline using borders instead. In the fol-
lowing example, the default underline is removed and replaced with a less obtrusive dot-
ted line. When the link is hovered over or clicked, this line turns solid to provide the user
with visual feedback that something has happened:

a:link, a:visited {
text-decoration: none;
border-bottom: 1px dotted #000;

}

a:hover, a:active {
border-bottom-style: solid;

}

Fancy link underlines

You can create some very interesting effects by using images to create your link underlines.
For instance, I have created a very simple underline graphic comprised of diagonal lines
(Figure 4-1).

You can then apply this image to your links using the following code:

a:link, a:visited {
color:#666;
text-decoration: none;
background: url(images/underline1.gif) repeat-x left bottom;

}

You can see the resulting styled link in Figure 4-2.

You do not have to stop with link and visited styles. In this example, I have created an ani-
mated GIF for the hover and active states, which I apply using the following CSS:

a:hover, a:active {
background-image: url(images/underline1-hover.gif);

}

When you hover over or click the link, the diagonal lines appear to scroll from left to right,
creating an interesting pulsing or poling effect. Not all browsers support background
image animations, but those that do not will usually display the first frame of the anima-
tion, ensuring that the effect degrades nicely in older browsers.

Figure 4-2. Custom link
underline

Figure 4-1. Simple underline
graphic

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

72

6145_Ch04 1/11/06 5:51 PM Page 72

Highlighting different types of link
On many sites it is difficult to tell if a link points to another page on that site or to a dif-
ferent site altogether. We have all clicked a link expecting it to go to another page in the
current site, only to be whisked away somewhere different and unexpected. To combat
this problem, many sites will open external links in a new window. However, this is not a
good idea as it is taking control away from the user and potentially littering their desktops
with unwanted windows.

The best solution is to indicate external links somehow, and let the user decide whether
they want to leave the site, open the link in a new window, or more probably these days,
in a new tab. You can do this by adding a small icon next to any external links. Sites like
wikipedia.com already do this and an icon convention for offsite links has started to
appear: a box with an arrow (Figure 4-3).

The easiest way to do this is to add a class to any external links, and then apply the icon as
a background image. In this example I have created space for the icon by giving the link a
small amount of right padding, and then applied the icon as a background image at the
top right of the link (see Figure 4-4).

.external {
background: url(images/externalLink.gif) no-repeat right top;
padding-right: 10px;

}

Although this method works, it is not a particularly smart or elegant way of doing things,
as you have to manually add your class to each external link. What if there was a way to
get CSS to determine whether something was an external link for you? Well, in fact there
is: using attribute selectors.

Figure 4-4. External
link styling

Figure 4-3. External
link icon

Remember to use animation carefully as it can cause accessibility problems for
some users. If in doubt, always remember to check the Web Content
Accessibility Guidelines (WCAG 1.0) at www.w3.org/TR/WAI-WEBCONTENT/.

STYLING LINKS

73

4

6145_Ch04 1/11/06 5:51 PM Page 73

As you learned in Chapter 1, attribute selectors allow you to target an element based on
the existence or value of an attribute. CSS 3 extends the ability with substring matching
attribute selectors. As the name suggests, these selectors allow you to target an element
by matching part of the attribute’s value to your chosen text. CSS 3 is not an official spec-
ification yet, so using these advanced selectors will probably invalidate your code.
However, a number of standards-compliant browsers such as Firefox and Safari already
support these CSS 3 selectors, so the chance of them being dropped from the final spec is
pretty slim.

This technique works by first targeting any links that start with the text http: using the
[att^=val] attribute selector:

a[href^="http:"] {
background: url(images/externalLink.gif) no-repeat right top;
padding-right: 10px;

}

This should highlight all external links. However, it will also pick up internal links using
absolute rather than relative URLs. To avoid this, you need to reset any links to your own site
by removing the external link icon. This is done by matching links that point to your domain
name, removing the external link icon, and resetting the right padding (see Figure 4-5).

a[href^="http://www.yoursite.com"], a[href^="http://yoursite.com"] {
background-image: none;
padding-right: 0;

}

Figure 4-5. A page showing external links styled differently from internal ones

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

74

6145_Ch04 1/11/06 5:51 PM Page 74

Most standards-compliant browsers support this technique, but older browsers such as IE
6 and below will simply ignore it.

If you like, you could extend this technique to highlight email links as well. In this example
I am adding a small email icon to all mailto links:

a[href^="mailto:"] {
background: url(images/email.png) no-repeat right top;
padding-right: 10px;

}

You could even highlight nonstandard protocols such as the AIM instant messaging proto-
col, with a little AIM buddy icon (see Figure 4-6):

a[href^="aim:"] {
background: url(images/im.png) no-repeat right top;
padding-right: 10px;

}

instant message

Figure 4-6. Email and instant message link styles

Highlighting downloadable documents and feeds

Another common frustration is clicking on a link thinking it is going to take you to a page,
only for it to start downloading a PDF or Microsoft Word document. Luckily, CSS can help
us distinguish these types of links as well. This is done using the [att$=val] attribute
selector, which targets attributes that end in a particular value, such as .pdf or .doc:

a[href$=".pdf"] {
background: url(images/pdfLink.gif) no-repeat right top;
padding-right: 10px;

}

a[href$=".doc"] {
background: url(images/wordLink.gif) no-repeat right top;
padding-right: 10px;

}

So in a similar way to the previous examples, you can highlight links to word documents or
PDFs with their own separate icon, warning people that they are downloads rather than
links to another page.

STYLING LINKS

75

4

6145_Ch04 1/11/06 5:51 PM Page 75

Lastly, many people have RSS feeds on their website. The idea is for people to copy these
links into their feed readers. However, inadvertently clicking one of these links may take
you to a page of seemingly meaningless data. To avoid possible confusion, you could high-
light RSS feeds using a similar method, with your own RSS icon:

a[href$=".rss"], a[href$=".rdf"] {
background: url(images/feedLink.gif) no-repeat right top;
padding-right: 10px;

}

All these techniques can help to improve the user experience on your site. By warning
users about offsite links or downloadable documents, you let them know exactly what to
expect when they click a link, and avoid unnecessary backtracking and frustration.

Creating buttons and rollovers
Anchors are inline elements, which means they only activate when you click on the con-
tent of the link. However, there are instances when you want to create more of a button-
like effect with a larger clickable area. You can do this by setting the display property of
the anchor to block, and then changing the width, height, and other properties to create
the style and hit area you want.

a {
display: block;
width: 6em; /* dimensions needed for IE5.x/Win */
padding: 0.2em;
line-height: 1.4;
background-color: #94B8E9;
border: 1px solid black;
color: #000;
text-decoration: none;
text-align: center;

}

The resulting link should now look like Figure 4-7.

Figure 4-7. Link
styled like a button

Unfortunately, IE 6 and below doesn’t support the attribute selector. Luckily,
you can create a similar effect by adding a class to each element
using JavaScript and the DOM. One of the best ways to do this is with Simon
Willison’s excellent getElementBySelector function; you can find more details
at http://tinyurl.com/dmao4.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

76

6145_Ch04 1/11/06 5:51 PM Page 76

With the link now displaying as a block-level element, clicking anywhere in the block will
activate the link.

If you look at the CSS, you’ll see that the width has been explicitly set in ems. By their
nature, block-level elements expand to fill the available width, so if the width of their par-
ent elements were greater than the required width of the link, you would need to apply
the desired width to the link. This would likely be the case if you wanted to use such a
styled link in the main content area of your page. However, if your styled links were going
in a sidebar, for example, you would probably just set the width of the sidebar, and not
worry about the width of the links.

Unfortunately, IE 5.x on Windows has a bug whereby, if no width or height is defined, only
the link text becomes active, even though the display property has been set to block. In
the previous example I control the height of the button using line-height, so an explicit
width is necessary to make the whole area clickable in IE 5.x for Windows.

You may wonder why I am using line-height to control the height of the button instead
of height. Well, this is actually a handy little trick for centering the text in the button ver-
tically. If you were to set a height, you would probably have to use padding to push the
text down and fake vertical centering. However, text is always vertically centered in a line
box, so by using line-height instead, the text will always sit in the middle of the box.
There is one downside, though. If the text in your button wraps onto two lines, the button
will be twice as tall as you want it to be. The only way to avoid this is to size your buttons
and text in such a way that the text won’t wrap, or at least won’t wrap until your text size
has been increased beyond a reasonable amount.

Simple rollovers

In the bad old days, people used large and overly complicated JavaScript functions to cre-
ate rollover effects. Thankfully, using the :hover pseudo-class allows us to create rollover
effects without the need of JavaScript. You can extend the previous example to include a
very simple rollover effect simply by setting the background and text color of the link
when hovered over (Figure 4-8):

a:hover {
background-color: #369;
color: #fff;
}

Figure 4-8. Hover style
showing active area

STYLING LINKS

77

4

6145_Ch04 1/11/06 5:51 PM Page 77

Rollovers with images

Changing background colors works well for simple buttons, but for more complicated but-
tons it is best to use background images. For the next example I have created two button
images, one for the up state and one for the hover state (see Figure 4-9). If you wanted,
you could also add an active state, which would be triggered using the :active dynamic
pseudo-class.

Figure 4-9. Images for the normal and hover button states

The code for this example is similar to the preceding example. The main difference is that
background images are being used instead of background colors.

a:link, a:visited {
display: block;
width: 200px;
height: 40px;
line-height: 40px;
color: #000;
text-decoration: none;
background: #94B8E9 url(images/button.gif) no-repeat left top;
text-indent: 50px;

}

a:hover {
background: #369 url(images/button_over.gif) no-repeat left top;
color: #fff;
}

This example uses fixed-width and -height buttons, which is why I have set explicit pixel
dimensions in the CSS. However, there is nothing to stop you from creating oversized but-
ton graphics, or using a combination of background colors and images to create a fluid or
an elastic button.

Pixy-style rollovers

The main drawback with the multiple image method is a slight delay as browsers load the
hover image for the first time. This can cause an undesirable flickering effect and make
your buttons feel a little unresponsive. It is possible to preload the hover images by apply-
ing them as a background to the parent element. However, there is another way. Instead

button.gif

button_over.gif

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

78

6145_Ch04_3P 4/5/06 1:08 PM Page 78

of swapping in multiple background images, use a single image and switch its background
position instead. Using a single image has the added benefit of reducing the number of
server requests as well as allowing you to keep all your button states in one place. This
method is known as the Pixy method after the nickname of its creator, .

Begin by creating your combined button image (see Figure 4-10). In this case I am only
using an up state and an over state, but you could also have an active and a visited state if
you desired.

Figure 4-10. Both button states as a single image

The code is almost identical to the previous example. However, this time you align the
rollover image to the left for the normal link state, and then shift it to the right for the
hover state.

a:link, a:visited {
display: block;
width: 200px;
height: 40px;
line-height: 40px;
color: #000;
text-decoration: none;
background: #94B8E9 url(images/pixy-rollover.gif) no-repeat left top;
text-indent: 50px;

}

a:hover {
background-color: #369;
background-position: right top;
color: #fff;
}

Unfortunately, IE on Windows still makes a round-trip to the server to request a new
image, even though all you are doing is changing the alignment of the image. This causes
a slight flicker, which can be a little annoying. To avoid the flicker you need to apply the
rollover state to the link’s parent element, for example, its containing paragraph.

p {
background: #94B8E9 url(images/pixy-rollover.gif)➥

no-repeat right top;
}

The image will still disappear for an instant while it is being reloaded. However, during this
time, the same image will be revealed underneath, hiding the flicker.

STYLING LINKS

79

4

6145_Ch04_3P 4/3/06 4:09 PM Page 79

Visited-link styles
Designers and developers often forget about the visited-link style and end up styling vis-
ited links the same as unvisited ones. However, a separate visited-link style can help orien-
tate users, showing them which pages or sites they have already visited and avoiding
unnecessary backtracking. Visited-link styles can add clutter to the main content area of
your site, so use them wisely. However, they come into their own when used in sidebars or
subnavigation.

You can create a very simple visited-link style by adding a check box to every visited link:

a:visited {
padding-right: 20px;
background: url(check.gif) right middle;

}

Taking this a step further, say you had a list of links in your sidebar to external sites:

Andy Budd's Blogography
Stuff and Nonsense
Hicks Design
Clagnut
HTML Dog
Adactio
All In The Head
Mark Boulton
Ian Lloyd

Using the Pixy rollover method you learned about earlier, you could create a single image
for the unvisited and visited states (see Figure 4-11). If you wanted, you could add hover
and active states as well.

Figure 4-11. Unvisited- and visited-link graphics in a single image

You would then apply your background image much in the same way as before. Do not
worry about the list styling here, as I will be covering lists in depth in the next chapter. The
most important thing to note is the background image styling on the anchor and the vis-
ited state.

ul {
list-style:none;

}

li {
margin: 5px 0;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

80

6145_Ch04 1/11/06 5:51 PM Page 80

li a {
display: block;
width: 300px;
height: 30px;
line-height: 30px;
color: #000;
text-decoration: none;
background: #94B8E9 url(images/visited.gif) no-repeat left top;
text-indent: 10px;

}

li a:visited {
background-position: right top;

}

You can see the resulting links list in Figure 4-12. Each site you have visited will show up as
a check next to the site name, providing valuable feedback that you’ve already been there.
Simon Collison demonstrates how this concept can be put to practical use in his Chapter
10 case study.

Pure CSS tooltips
Tooltips are the little yellow text boxes that pop up in some browsers when you hover over
elements with title tags. Several developers have created their own custom, stylized tooltips
using a combination of JavaScript and CSS. However, it is possible to create pure CSS
tooltips by using CSS positioning techniques. This technique requires a modern, standards-
compliant browser like Firefox to work properly. As such, it is not a technique you would
add to your day-to-day arsenal. However, it does demonstrate the power of advanced CSS
and gives you a hint of what will be possible when CSS is better supported.

Figure 4-12. External
link list showing visited
sites with a check

STYLING LINKS

81

4

6145_Ch04 1/11/06 5:51 PM Page 81

As with all of the examples in this book, you need to start with well-structured and mean-
ingful (X)HTML:

<p>

Andy Budd (This website rocks)
is a web developer based in Brighton England.
</p>

I have given the link a class of tooltip to differentiate it from other links. Inside the link I
have added the text I wish to display as the link text, followed by the tooltip text enclosed
in a span. I have wrapped my tooltip text in brackets so that the sentence still makes sense
with styles turned off.

The first thing you need to do is set the position property of the anchor to relative. This
allows you to position the contents of the span absolutely, relative to the position of its
parent anchor. You do not want the tooltip text to display initially, so you should set its
display property to none:

a.tooltip {
position: relative;

}

a.tooltip span {
display: none;

}

When the anchor is hovered over, you want the contents of the span to appear. This is
done by setting the display property of the span to block, but only when the link is hov-
ered over. If you were to test the code now, hovering over the link would simply make the
span text appear next to the link.

To position the contents of the span below and to the right of the anchor, you need to set
the position property of the span to absolute and position it 1em from the top of the
anchor and 2ems from the left.

a.tooltip:hover span {
display: block;
position: absolute;
top: 1em;
left: 2em;

}

Remember, an absolutely positioned element is positioned in relation to its
nearest positioned ancestor, or failing that, the root element. In this example,
we have positioned the anchor, so the span is positioned in relation to that.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

82

6145_Ch04 1/11/06 5:51 PM Page 82

And that’s the bulk of the technique. All that is left is to add some styling to make the span
look more like a tooltip. You can do this by giving the span some padding, a border, and a
background color:

a.tooltip:hover span {
display:block;
position:absolute;
top:1em;
left:2em;
padding: 0.2em 0.6em;
border:1px solid #996633;
background-color:#FFFF66;
color:#000;

}

Previewing the technique in Firefox, it should look something like Figure 4-13.

Figure 4-13. Pure CSS tooltip

Unfortunately, this technique does not work properly in IE 5.x on Windows as it stands. It
would seem that IE has problems styling elements inside anchor links using a dynamic
pseudo-class. However, there is a fix:

a.tooltip:hover {
font-size: 100%; /* Fixes bug in IE5.x/Win */

}

Setting the font size as 100% on the hovered anchor somehow triggers Internet Explorer on
Windows into correctly styling the contained span. Strange I know, but that’s IE for you.

Sadly this technique breaks in Safari, and I have not managed to find a fix as I’ve done for
Internet Explorer on Windows.

Summary
In this chapter you have learned how to style links in a variety of ways. You now know how
to style links depending on the site or file they link to, and you can make links behave like
buttons and create rollover effects using colors or images. You can even create advanced
effects such as pure CSS tooltips.

In the next chapter you will learn how to manipulate lists, and using the information you
have learned in this chapter, create navigation lists, pure CSS image maps, and remote
rollovers. Let the fun begin.

STYLING LINKS

83

4

6145_Ch04 1/11/06 5:51 PM Page 83

5 STYLING LISTS AND
CREATING NAV BARS

6145_Ch05 1/11/06 5:51 PM Page 85

It is in our nature to try to organize the world around us. Scientists create lists of animals,
plants, and chemical elements. Magazines create lists of the top 10 movies, the latest fash-
ion trends, or the worst-dressed celebrities. People write shopping lists, to-do lists, and
lists to Santa. We just love making lists.

Lists provide us with a way of grouping related elements and, by doing so, we give them
meaning and structure. Most web pages contain some form of list, be it a list of the latest
news stories, a list of links to your favorite web pages, or a list of links to other parts of
your site. Identifying these items as lists and marking them up as such can help add struc-
ture to your HTML documents, providing useful hooks with which to apply your styles.

In this chapter you will learn about

Styling lists with CSS

Using background images as bullets

Creating vertical and horizontal nav bars

Using sliding doors tabbed navigation

Creating CSS image maps

Creating remote rollovers

Using definition lists

Basic list styling
Basic list styling is very simple. Say you start with this simple to-do list:

Read emails
Write book
Go shopping
Cook dinner
Watch Scrubs

To add a custom bullet you could use the list-style-image property. However, this doesn’t
give you much control over the position of your bullet image. Instead, it is more common to
turn list bullets off and add your custom bullet as a background image on the list element.
You can then use the background image positioning properties to accurately control the
alignment of your custom bullet.

Internet Explorer and Opera control list indentation using left margin, whereas Safari and
Firefox choose to use left padding. As such, the first thing you will want to do is remove
this indentation by zeroing down the margin and padding on the list. To remove the
default bullet, you simply set the list style type to none:

ul {
margin: 0;
padding: 0;
list-style-type: none;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

86

6145_Ch05_3P 3/29/06 4:51 PM Page 86

Adding a custom bullet is very straightforward. Adding padding to the left side of the list
item creates the necessary space for your bullet. The bullet is then applied as a back-
ground image on the list item. If the list item is going to span multiple lines, you will prob-
ably want to position the bullet at or near the top of the list item. However, if you know
the contents of the list items won’t span more than one line, you can vertically center the
bullet by setting the vertical position to either middle or 50%:

li {
background: url(bullet.gif) no-repeat 0 50%;
padding-left: 30px;

}

The resulting styled list can be seen in Figure 5-1.

Creating a vertical nav bar
Combining the previous example with the link styling techniques you learned in Chapter 4,
you can create graphically rich vertical navigation bars complete with CSS rollovers, like
the one in Figure 5-2.

As always, you need to start with a good HTML framework:

Home
About
Our Services
Our Work
News
Contact

Figure 5-2. Styled
vertical nav bar

Figure 5-1. Simple styled
list with custom bullets

STYLING LISTS AND CREATING NAV BARS

87

5

6145_Ch05_3P 3/29/06 4:53 PM Page 87

The first thing you want to do is remove the default bullets and zero down the margin and
padding:

ul {
margin: 0;
padding: 0;
list-style-type: none;

}

Rather than style the list items, you are going to be styling the enclosed anchors. To create
a button-like hit area, you need to set the display property of the anchors to block, and
then specify the anchor’s dimensions. In this example my navigation buttons are 200 pixels
wide and 40 pixels high. The line height has also been set to 40 pixels in order to center the
link text vertically. The last couple of rules are just stylistic, setting the color of the link text
and turning off the underlines.

ul a {
display: block;
width: 200px;
height: 40px;
line-height: 40px;
color: #000;
text-decoration: none;

}

Using the Pixy rollover technique you learned about in Chapter 4, the rollover graphic
(Figure 5-3) is applied as a background image to the anchor link.

Figure 5-3. A single image composed of both the up and hover state images

The background image is aligned left in order to reveal the up state. The anchor text is
given a 50-pixel indent so that it is not sitting directly over the arrow in the background
image.

ul a {
display: block;
width: 200px;
height: 40px;
line-height: 40px;
color: #000;
text-decoration: none;
background: #94B8E9 url(images/pixy-rollover.gif) no-repeat ➥

left middle;
text-indent: 50px;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

88

6145_Ch05 1/11/06 5:51 PM Page 88

If you look at the rollover image in Figure 5-3, you will notice that it has a solid border all
the way around the image. When these images are stacked vertically, the top and bottom
borders will double up. However, you only want a single, 1-pixel black line between each
nav bar item. To get around this problem, clip the top line off by aligning the background
images to the bottom of the anchor and then reducing the height of the links by 1 pixel:

ul a {
display: block;
width: 200px;
height: 39px;
line-height: 39px;
color: #000;
text-decoration: none;
background: #94B8E9 url(images/pixy-rollover.gif) no-repeat ➥

left bottom;
text-indent: 50px;

}

The links now stack up nicely, with a single black line appearing between each one.
However, the top black line on the first link is no longer showing. To put this back you
need to reset the height of the first anchor to 40 pixels—the full height of the image. You
can do this by applying a class of first to the first list item:

li.first a {
height: 40px;
line-height: 40px;

}

The list now looks like a stylish vertical navigation bar. To complete the effect, the last
thing you need to do is apply the hover and selected states. To do this, you simply shift the
background image on the anchor links to the right, uncovering the hover state graphic.
This style is applied to the anchor links when the user hovers over them. It is also applied
to any anchors that have a class of selected applied to their parent list item.

a:hover, .selected a {
background-position: right bottom;
color: #fff;

}

This technique should now work in all the major browsers except IE for Windows.
Unfortunately, IE inexplicably adds extra space above and below the list items. To fix this
bug, you need to set the display property on the list items to inline:

li {
display: inline: /* :KLUDGE: Removes large gaps in IE/Win */

}

And there you have it: a styled vertical nav bar, complete with rollovers.

STYLING LISTS AND CREATING NAV BARS

89

5

6145_Ch05 1/11/06 5:51 PM Page 89

Highlighting the current page in a nav bar
In the previous vertical nav bar example, I used a class to indicate the current page. For
small sites with the navigation embedded in the page, you can simply add the class on a
page-by-page basis. For large sites, there is a good chance that the navigation is being built
dynamically, in which case the class can be added on the back end. However, for medium-
sized sites, where the main navigation doesn’t change, it is common to include the naviga-
tion as an external file. In these situations, wouldn't it be good if there were a way to
highlight the page you are on, without having to dynamically add a class to the menu?
Well, with CSS there is.

This concept works by adding an ID or a class name to the body element of each page,
denoting which page or section the user is in. You then add a corresponding ID or class
name to each item in your navigation list. The unique combination of body ID and list
ID/class can be used to highlight your current section or page in the site nav.

Take this HTML fragment as an example. The current page is the home page, as indicated
by an ID of home on the body. Each list item in the main navigation is given a class name
based on the name of the page the list item relates to:

<body id="home">
<ul id="mainNav">
<li class="home">Home
<li class="about">About
<li class="news">News
<li class="products">Products
<li class="services">Services

</body>

To highlight the current page you simply target the following combination of IDs and class
names:

#home #mainNav .home a,
#about #mainNav .about a ,
#news #mainNav .news a,
#products #mainNav .products a,
#services #mainNav .services a {
background-position: right bottom;
color: #fff;
cursor: default;

}

When the user is on the home page, the nav item with a class of home will display the
selected state, whereas on the news page, the nav item with the class of news will show the
selected state. For added effect, I have changed to cursor style to show the default arrow
cursor. That way, if you mouse over the selected link, your cursor will not change state and
you won’t be tempted to click a link to a page you are already on.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

90

6145_Ch05 1/11/06 5:51 PM Page 90

Creating a horizontal nav bar
As well as using lists to create vertical nav bars, they can also be used to create horizontal
ones. In this example, I am going to demonstrate how to create a horizontal navigation bar
like the one in Figure 5-4.

Figure 5-4. Horizontal nav bar

As in the previous example, you start with a simple, unordered list:

Home
About
News
Products
Services
Clients
Case Studies

You then zero down the padding and margins, as well as remove the default bullets. For
this example I want my horizontal nav bar to be 720 pixels wide, and to have a repeating
orange gradient as a background:

ul {
margin: 0;
padding: 0;
list-style: none;
width: 720px;
background: #FAA819 url(images/mainNavBg.gif) repeat-x;

}

The list is currently displayed vertically. To make it display horizontally, you can use one of
two methods. You can either set the list items to display inline, or you can float them all
left. Displaying the list items as inline is probably the simpler method. However, from per-
sonal experience I have found that it can produce buggy results; therefore, I tend to favor
the floating method:

ul li {
float: left;

}

Remember that when an element is floated, it no longer takes up any space in the flow of
the document. As such, the parent list effectively has no content and collapses down, hid-
ing the list background. As you learned in Chapter 2, there are two ways to make parent
elements contain floated children. One method is to add a clearing element.
Unfortunately this adds unnecessary markup to the page so should be avoided if possible.

STYLING LISTS AND CREATING NAV BARS

91

5

6145_Ch05 1/11/06 5:51 PM Page 91

The other method is to float the parent element as well, and clear it further down the line,
say, using the site footer. This is the method I normally use:

ul {
margin: 0;
padding: 0;
list-style: none;
width: 720px;
float: left;
background: #FAA819 url(images/mainNavBg.gif) repeat-x;

}

As in the vertical navigation bar example, the links in the horizontal nav bar are made to
behave like buttons by setting their display property to block. If you wanted each button
to be a fixed size, you could explicitly set its height and width. In this example, I want the
width of each button to be based on the size of the anchor text. To do this, rather than
setting a width, I have applied 2ems of padding to the left and right sides of each anchor
link. As in the previous example, the link text is being vertically centered using line height.
Lastly, the link underlines are turned off and the link color is changed to white:

ul a {
display: block;
padding: 0 2em;
line-height: 2.1em;
text-decoration: none;
color: #fff;

}

I want to create dividers between each link in the nav bar. This can be done by applying a
divider graphic as a background image to the left of each anchor link:

ul a {
display: block;
padding: 0 2em;
line-height: 2.1em;
background: url(images/divider.gif) repeat-y left top;
text-decoration: none;
color: #fff;

}

However, the first link in the nav bar will have an unwanted divider. Adding a class to the
first list item and setting the background image to none can remove this:

ul .first a {
background: none;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

92

6145_Ch05 1/11/06 5:51 PM Page 92

Lastly, the rollover state in this example is simply a change in link color:

ul a:hover {
color: #333;

}

This nav bar works well on most modern browsers, but it doesn’t work as expected in IE
5.2 on the Mac. This is because IE 5.2 on the Mac doesn’t shrink-wrap the floated list items
because the enclosed anchors have been set to display as block-level elements. To avoid
this problem, we simply need to float the anchors as well:

ul a {
display: block;
float: left;
padding: 0 2em;
line-height: 2.1em;
background: url(images/divider.gif) repeat-y left top;
text-decoration: none;
color: #fff;

}

And there you have it: a well-styled horizontal nav bar with good, cross-browser support.

Simplified “sliding doors” tabbed navigation
In Chapter 3 you learned about Douglas Bowman’s sliding doors technique, and how it
could be used to create flexible, rounded-corner boxes. This technique can also be used to
create flexible, expandable tabbed navigation. Using this method, tabs are created from
one large image and one side image. As the text in the tabs expands, more of the large
image is uncovered. The smaller image stays flush to the left, covering up the hard edge of
the larger image and completing the effect (see Figure 5-5).

Figure 5-5. Example of the “sliding doors” technique

tab-right.giftab-left.gif

As the list item
expands, tab-left.gif
covers tab-right.gif

li

STYLING LISTS AND CREATING NAV BARS

93

5

6145_Ch05 1/11/06 5:51 PM Page 93

The images used to create the tabs in the following example can be seen in Figure 5-6.
Both of these images are very large. This is to allow the font size to be increased by several
hundred percent without the tabs appearing to break.

Figure 5-6. The two images that make up the tabs

The HTML for this example is exactly the same as in the previous, horizontal nav bar
example:

Home
About
News
Products
Services
Clients
Case Studies

As in the previous example, the margin and padding are zeroed, the list bullets are
removed, and a width is set for the navigation bar. The tabbed navigation bar is also
floated left in order to contain any enclosed floats:

ul {
margin: 0;
padding: 0;
list-style: none;
width: 720px;
float: left;

}

Like the previous example, the list elements are floated left to make them display hori-
zontally rather than vertically. However, this time, the larger of the two images that make
up the tab is applied as a background image to the list item. As this image forms the right
side of the tab, it is positioned to the right:

tab-left.gif tab-right.gif

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

94

6145_Ch05 1/11/06 5:51 PM Page 94

ul li {
float: left;
background: url(images/tab-right.gif) no-repeat top right;

}

As in the previous example, the anchors are set to display as block-level elements to make
the whole area clickable. The width of each tab is again controlled by the width of the con-
tents, and setting the line height similarly controls the height. To complete the tab effect,
the left part of the tab is applied as a background on the anchor and aligned left. As the
tab changes size, this image will always be aligned left, sitting over the top of the larger
image and covering the hard left edge. Lastly, to make sure this technique works in IE 5.2
on the Mac, the anchors are floated as well.

li a {
display: block;
padding: 0 2em;
line-height: 2.5em;
background: url(images/tab-left.gif) no-repeat top left;
text-decoration: none;
color: #fff;
float: left;

}

To create the rollover effect, you can simply change the link color:

ul a:hover {
color: #333;

}

The resulting tabbed navigation should look like Figure 5-7.

Figure 5-7. “Sliding doors” tabbed navigation at normal size

If you increase the text size in your browser, you should see that the tabs scale nicely, as
demonstrated in Figure 5-8.

Figure 5-8. “Sliding doors” tabbed navigation after the text size has been scaled several times

This method provides an easy and hassle-free way to make attractive and accessible
tabbed navigation bars.

STYLING LISTS AND CREATING NAV BARS

95

5

6145_Ch05 1/11/06 5:51 PM Page 95

CSS image maps
Image maps allow web developers to specify regions of an image to act as hotspots. Image
maps were very popular several years ago, but they are much less common these days.
This is partly due to the popularity of Flash, and partly due to the move toward simpler
and less presentational markup. While image maps are still a perfectly valid part of HTML,
they do mix presentation with content. However, it is possible to create simple image maps
with a combination of lists, anchors, and some advanced CSS.

For this example I am using a photograph of the Clearleft gang posing for pictures on the
Brighton seafront (see Figure 5-9). When I hover over each person, I want a rectangular
box to appear. Clicking on this box will take me to that person’s website.

Figure 5-9. Rich, Jeremy, and me posing for pictures on the Brighton seafront

The first thing you need to do is add your image to the page, inside a named div:

<div id="pic">
<img src="images/group-photo.jpg" width="640" height="425"➥

alt="Richard, Andy and Jeremy" />
</div>

Then, add a list of links to each person’s website after the image. Each list item needs to be
given a class to identify the person in that list item. You can also give each link a title
attribute containing the name of the person. That way, when the link is hovered over, a
tooltip showing who the person is will be displayed on most browsers.

<div id="pic">
<img src="images/group-photo.jpg" width="640" height="425"➥

alt="Richard, Andy and Jeremy" />

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

96

6145_Ch05 1/11/06 5:51 PM Page 96

<li class="rich">

Richard Rutter

<li class="andy">

Andy Budd

<li class="jeremy">

Jeremy Keith

</div>

Set the width and height of the div so that it matches the dimensions of the image. Then
set the position property of the div to relative. This last step is the key to this tech-
nique as it allows the enclosed links to be positioned absolutely, in relation to the edges of
the div, and hence the image.

#pic {
width: 640px;
height: 425px;
position: relative; /* The key to this technique */

}

You won’t want the list bullets to display, so remove them by setting the list-style property
to none. For completeness you may as well zero down the list’s margin and padding as well:

#pic ul {
margin: 0;
padding: 0;
list-style: none;

}

The next thing to do is style the links. By positioning the anchor links absolutely, they will
all be moved to the top-left corner of the containing div. They can then be positioned
individually over the correct people, forming the hotspots. However, first you will need to
set their widths and heights to create your desired hit area. The link text is still displayed;
therefore, it is necessary to hide it off the screen by using a large, negative text indent:

#pic a {
position: absolute;
width: 100px;
height: 120px;
text-indent: -1000em;

}

STYLING LISTS AND CREATING NAV BARS

97

5

6145_Ch05 1/11/06 5:51 PM Page 97

The individual links can now be positioned over the relevant people:

#pic .rich a {
top: 15px;
left: 95px;

}

#pic .andy a {
top: 115px;
left: 280px;

}

#pic .jeremy a {
top: 250px;
left: 425px;

}

Lastly, to create the rollover effect, a solid white border is applied to the links when they
are hovered over:

#pic a:hover {
border: 1px solid #fff;

}

And that is the basic technique finished. If you try rolling over one of the pictures, you
should see something similar to Figure 5-10.

Figure 5-10. The CSS image map being rolled over

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

98

6145_Ch05 1/11/06 5:51 PM Page 98

flickr-style image maps

If you have used the photo sharing service flickr, you may have come across a similar tech-
nique used to annotate images (see Figure 5-11). When you roll over an annotated image,
a double-bordered box will appear over the area containing each note. When you hover
over one of these boxes, it will highlight and display the note. With a spot of tweaking, we
can achieve the same thing using the previous technique.

Figure 5-11. Image notes on flickr

To create the double-border box you need to add a couple of extra spans inside each
anchor link. The note will also need the addition of an extra span. Once the extra spans
have been added, the amended list should look like this:

<li class="rich">

Richard Rutter

...

STYLING LISTS AND CREATING NAV BARS

99

5

6145_Ch05 1/11/06 5:51 PM Page 99

The CSS starts off identical to the previous example, setting the dimensions of the wrapper
div to those of the image, and the position property to relative. The list padding and
margin are again zeroed down and the bullets removed:

#pic {
width: 640px;
height: 425px;
position: relative;

}

#pic ul {
margin: 0;
padding: 0;
list-style: none;

}

As before, the enclosed anchor links are positioned absolutely and given dimensions to
form the hotspots. However, this time you don’t want to hide the content of the link—you
want to display it. As such, rather than hiding it off screen, give the anchor text a color and
remove its default underline. The highlight effect on rollover is going to be created by
adding a yellow border when the anchor is hovered over. To avoid the anchor from shift-
ing position slightly when hovered over, it is necessary to give the link a 1-pixel transpar-
ent border:

#pic a {
position: absolute;
width: 100px;
height: 120px;
color: #000;
text-decoration: none;
border: 1px solid transparent;

}

As before, you will need to position the anchors over each person:

#pic .rich a {
top: 15px;
left: 95px;

}

#pic .andy a {
top: 115px;
left: 280px;

}

#pic .jeremy a {
top: 250px;
left: 425px;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

100

6145_Ch05 1/11/06 5:51 PM Page 100

To create the double-border effect, the outer and inner spans need to have their display
properties set to block. They can then be given dimensions and colored borders. In this
case, the outer span is being given a black border while the inner span is given a white
border:

#pic a .outer {
display: block;
width: 98px;
height: 118px;
border: 1px solid #000;

}

#pic a .inner {
display: block;
width: 96px;
height: 116px;
border: 1px solid #fff;

}

You can then apply the rollover effect to the anchor link. This is done by changing the
anchor’s border color from transparent to yellow on hover:

#pic a:hover {
border-color: #d4d82d;

}

To display the note when the hotspot is rolled over, you first need to position the contents
of the note span beneath the hotspot. To do this, set the position of the note span to
absolute, and give it a negative bottom position. To pretty up the notes, set a width, some
padding, and a background color, then center the text:

#pic a .note {
position: absolute;
bottom: -3em;
width: 9em;
padding: 0.2em 0.5em;
background-color:#ffc;
text-align: center;
}

STYLING LISTS AND CREATING NAV BARS

101

5

6145_Ch05 1/11/06 5:51 PM Page 101

If you check the page in the browser, it should look something like Figure 5-12.

Figure 5-12. The flickr style rollovers are starting to take shape.

As you can see, the effect is starting to take shape. The notes look OK, but it would be nice
if they were centered horizontally below the hotspot, rather than flush to the left. You can
do this by positioning the left edge of the note span at the midpoint of the hotspot. Next,
move the note span left, half the width of the note, using negative margins. The hotspot in
this example is 100 pixels wide, so I have set the left position of the note to be 50 pixels.
The notes are 10ems wide, including the padding, so setting a negative left margin of 5ems
will horizontally center the note beneath the hotspot.

#pic a .note {
position: absolute;
bottom: -3em;
width: 9em;
padding: 0.2em 0.5em;
background-color:#ffc;
text-align: center;
left: 50px;
margin-left: -5em;

}

With the notes now centered, it’s time to work on their interactivity. The notes should be
hidden by default and only displayed when the hotspot is hovered over. To do this you
could set the display property to none and then change it to block when the anchor link

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

102

6145_Ch05 1/11/06 5:51 PM Page 102

is hovered over. However, this would prevent some screenreaders from accessing the con-
tents of the note. Instead, I am going to hide the text off the left side of the screen, and
reposition it on hover:

#pic a .note {
position: absolute;
bottom: -3em;
width: 9em;
padding: 0.2em 0.5em;
background-color:#ffc;
text-align: center;
left: -30000px;
margin-left: -5em;

}

#pic a:hover .note {
left: 50px;

}

We are almost there now. Just one more tweak is required to finish the technique. Rather
than continuously display the hotspots’ double borders, it would be nice if the borders
only displayed when the image was rolled over. That way, people can enjoy the image nor-
mally, unfettered by the hotspots. However when the image is hovered, the hotspots
appear, letting the visitor know more information is available to be discovered. You can do
this by removing the borders from the outer and inner spans and putting them back when
the image is hovered over:

#pic:hover a .outer {
border: 1px solid #000;
}

#pic:hover a .inner {
border: 1px solid #fff;
}

Unfortunately, as you have already learned, IE 6 only supports hovering on anchor links. To
get around this problem, it is also a good idea to display the borders when the hotspots
are hovered over directly:

#pic:hover a .outer, #pic a:hover .outer {
border: 1px solid #000;
}

#pic:hover a .inner, #pic a:hover .inner {
border: 1px solid #fff;
}

STYLING LISTS AND CREATING NAV BARS

103

5

6145_Ch05 1/11/06 5:51 PM Page 103

And there you have it: a flickr-style, advanced CSS image map (see Figure 5-13).

Figure 5-13. The finished product

Remote rollovers
A remote rollover is a hover event that triggers a display change somewhere else on the
page. This is accomplished by nesting one or more elements inside an anchor link. Then,
using absolute positioning, you can position the nested elements individually. Despite
being displayed in different places, they are both contained within the same parent
anchor, so will both react to the same hover event. As such, when you hover over one ele-
ment, it can affect the style of another element.

In this example, you are going to build on the basic CSS image map technique by placing a
list of links below the image. When the links are hovered over, the image hotspots will be
outlined. Conversely, when you hover over the hot areas on the picture, the text links will
highlight.

The HTML for this example is similar to that of the basic CSS image map example.
However, you will need two additional spans: one wrapped around the link text, and one
empty span to act as the hotspot. This will allow you to position the link text beneath the
image and the hotspots over the respective people.

<div id="pic">
<img src="images/group-photo.jpg" width="640" height="425"➥

alt="Richard, Andy and Jeremy" />

<li class="rich">

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

104

6145_Ch05 1/11/06 5:52 PM Page 104

» Richard Rutter

<li class="andy">

» Andy Budd

<li class="jeremy">

» Jeremy Keith

</div>

The basic list styling is the same as the image map example:

#pic {
width: 640px;
height: 425px;
position: relative;

}

#pic ul {
margin: 0;
padding: 0;
list-style: none;

}

The first thing you need to do is set the position property of the hotspots to absolute,
and then specify their dimensions. In this example each hotspot is the same size, but you
could set different sizes on each one if you wanted. Just as in the previous technique, this
will position all of the anchors at the top-left corner of the image. You can then position
each hotspot over the relevant person in the image, using the top and left positioning
properties.

#pic a .hotspot {
width: 100px;
height: 120px;
position: absolute;

}

#pic .rich a .hotspot {
top: 15px;
left: 95px;

}

STYLING LISTS AND CREATING NAV BARS

105

5

6145_Ch05 1/11/06 5:52 PM Page 105

#pic .andy a .hotspot {
top: 115px;
left: 280px;

}

#pic .jeremy a .hotspot {
top: 250px;
left: 425px;

}

Similarly, the spans containing the link text are also positioned absolutely and are given a
width of 15ems. They too are positioned in relation to the enclosing list, in this case visu-
ally below the list using negative bottom positions:

#pic a .link {
position: absolute;
width: 15em;

}

#pic .rich a .link {
bottom: -2em;
left: 0;

}

#pic .andy a .link {
bottom: -3.2em;
left: 0;

}

#pic .jeremy a .link {
bottom: -4.4em;
left: 0;

}

The hotspots should now be in the correct place, as should the text links.

To create the rollover effect on the hotspot when either the hotspot or the text is hovered,
you need to apply a border to the hotspot span, when the parent anchor is hovered over:

#pic a:hover .hotspot {
border: 1px solid #fff;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

106

6145_Ch05 1/11/06 5:52 PM Page 106

Similarly, to change the color of the text when either the text or the hotspot span is hovered
over, you need to change the style on the span when the parent anchor is hovered over:

#pic a:hover .link {
color: #0066FF;

}

If you test this example, it works perfectly in Safari and Firefox (see Figure 5-14). If you
hover over a person’s name, the link text changes color, and a box appears over that per-
son in the picture. The same happens if you hover over the person in the image.

Figure 5-14. Remote rollover demonstration. When the link text at the bottom of
the image is rolled over, an outline appears over the associated person in the image.

Unfortunately, this example doesn’t quite work on IE on Windows. It would seem that
IE/Win has problems targeting nested elements inside an anchor link, using the :hover
dynamic pseudo-class. However, there is a simple, if somewhat odd, workaround. Adding
the following rule on the anchors hover state seems to fix the confusion in IE and allow it
to honor nested hover state rules:

#pic a:hover {
border: none;
}

STYLING LISTS AND CREATING NAV BARS

107

5

6145_Ch05 1/11/06 5:52 PM Page 107

While the styling of this example is quite simple, you are really only limited by your imag-
ination. One of the best examples of this technique in the wild can be seen at
http://dbowman.com/photos, the personal photo gallery of the technique’s creator,
Douglas Bowman (see Figure 5-15).

Figure 5-15. When you roll over the slide graphics on Douglas Bowman’s photo
gallery site, a translucent “next photo” graphic appears over the image.

A short note about definition lists
Throughout this chapter I have discussed how unordered lists (and by extension, ordered
lists) can be used to create a variety of effects. However, there is a third, often overlooked
list type that has been gaining more attention of late: the definition list. A definition list
consists of two core components: a definition term <dt> and one or more definition
descriptions <dd>.

<dl>
<dt>Apple</dt>
<dd>Red, yellow or green fruit</dd>
<dd>Computer company</dd>
<dt>Bananna</dt>
<dd>Curved yellow fruit</dd>
</dl>

As the name suggests, the primary purpose of a definition list is to mark up definitions.
However, the (X)HTML specification is rather vague and suggests definition lists could be
used for other applications like product properties or conversations. This stretches the
concept of definitions somewhat, but still makes a certain amount of sense in the context
of (X)HTML’s history as a simple text formatting language.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

108

6145_Ch05 1/11/06 5:52 PM Page 108

Many web standards pioneers seized on the fact that definition lists could be used to
structurally group a series of related elements and started to use them to create every-
thing from product listing and image galleries, to form and even page layouts. While these
techniques are undoubtedly clever, I personally believe they stretch the implied meaning
of definition lists beyond their natural breaking point.

One of the arguments for using definition lists in this fashion is that no other (X)HTML ele-
ment allows for this type of association. However, this isn’t strictly true as the purpose of
the div element is to group a document up into logical sections. More worryingly, this is
exactly the same type of argument used when justifying tables for layout. This raises con-
cerns that definition lists are starting to be used inappropriately.

Because of this I am not going to cover any of these advanced techniques in this book. If
you would like to learn more about definition list styling, check out some of these
resources:

Max Design on definition lists: http://tinyurl.com/8e9fn

E-commerce definition lists: http://tinyurl.com/9sn54

Form layout with definition lists: http://tinyurl.com/7ef7q

Manipulating definition lists for fun and profit: http://tinyurl.com/8g3ll

Summary
In this chapter you have learned how flexible lists can be. You learned how to create ver-
tical and horizontal navigation bars, including accessible tabbed navigation. Finally, you
learned how to use positioning to create pure CSS image maps and remote rollovers.

In the next chapter you will learn how to create accessible form layouts and data tables,
and how to style them with CSS.

STYLING LISTS AND CREATING NAV BARS

109

5

6145_Ch05 1/11/06 5:52 PM Page 109

6 STYLING FORMS AND DATA TABLES

6145_Ch06 1/11/06 5:52 PM Page 111

As more and more interactivity is called for on the Web, forms are becoming an increas-
ingly important part of modern web applications. Forms allow users to interact with sys-
tems, enabling them to do everything from registering feedback to booking complicated
travel itineraries. As such, forms can be as simple as an email address and a message field,
or they can be hugely complex, spanning multiple pages. Form layout has traditionally
been done using tables; however, in this chapter you will learn that even complicated
forms can be laid out using CSS.

Tables are slowly regaining their rightful position purely as a way of displaying tabular data,
rather than a means of page layout. As well as needing to capture user data, web applica-
tions increasingly need to display this data in a usable and an easy-to-understand format.
Form and data table design have been relatively neglected in favor of higher-profile areas
of design. However, good information and interaction design can make or break a modern
web application.

In this chapter you will learn about

Creating attractive and accessible data tables

Creating simple and complicated form layouts

Styling various form elements

Providing accessible form feedback

Styling data tables
Even relatively simple data tables can be hard to read if they contain more than a few rows
and columns. With little separation between data cells, information blurs together, result-
ing in a jumbled and confusing layout. For instance, in Figure 6-1 the track name and artist
name for track 11 blur into one long sentence. The same is true for the artist and album
names on track 2. You can read this information if you concentrate, but it does slow down
how quickly you can read and process the information on the table.

Figure 6-1. Compact data tables can be very confusing at first glance.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

112

6145_Ch06 1/11/06 5:52 PM Page 112

Conversely, tables with a lot of whitespace can also be very difficult to read as columns
and cells start to lose their visual association with each other. This is particularly problem-
atic when you’re trying to follow rows of information on tables with very large column
spacing, such as the one in Figure 6-2. If you are not careful, it is easy to accidentally stray
into the wrong row when moving between columns. This is most noticeable in the middle
of the table where the hard edge of the top and bottom of the table provide less of a
visual anchor.

Figure 6-2. Widely spaced tables can also be difficult to immediately comprehend.

By contrast, a few minutes spent designing your data tables can greatly improve their com-
prehension and the speed at which information can be retrieved.

For instance, the contents of the table in Figure 6-3 have been given visual space with a
small amount of vertical and horizontal padding. The main column headings have been
distinguished from the data with a subtle repeating background image. The alternating
colored rows help guide the eye horizontally between each cell of information, while not
overloading the reader with too much visual clutter. To further aid the reader, a hover
effect has been applied on each row to act like a ruler and highlight the row that is cur-
rently being read.

Figure 6-3. Stylized data table

STYLING FORMS AND DATA TABLES

113

6

6145_Ch06 1/11/06 5:52 PM Page 113

Table-specific elements

If data tables can be difficult for sighted users, imagine how complicated and frustrating
they must be for people using assistive technologies such as screenreaders. Fortunately,
the (X)HTML specification includes a number of elements and attributes intended to
increase the accessibility of data tables for these devices. Not all of these elements are cur-
rently supported by screenreaders, but it is definitely good practice to use them where
possible.

summary and caption
The first of these elements is a table caption, which basically acts as a heading for the
table. Although this is not a required element, it is always a good idea to use a caption
wherever possible. Another useful addition is a table summary. The summary attribute can
be applied to the table tag, and is used to describe the content of the table. Much like an
image’s alt text, the summary should effectively summarize the data in the table, and a
well-written summary may alleviate the need to read the contents of the table.

<table id="playlistTable" summary="Top 15 songs played. Top artist➥

include Coldplay, Yeah Yeah Yeahs, Snow Patrol, Deeper Water, Kings➥

of Leon, Embrace, Oasis, Franz Ferdinand, Jet, The Bees, Blue States,➥

Kaiser Cheifs and Athlete.">
<caption>Top 15 Playlist</caption>
</table>

thead, tbody, and tfoot
Using thead, tbody, and tfoot allows the developer to break tables up into logical sec-
tions. For instance, you can place all of your column headings inside the thead element,
providing you with a means of separately styling that particular area. If you choose to use
a thead or tfoot element, you must use at least one tbody element. You can only use one
thead and tfoot element in a table, but you can use multiple tbody elements to help
break complicated tables into more managable chunks.

Row and column headings should be marked up as th rather than td, although if some-
thing is both a heading and data it should be left as a td. Table headings can be given a
scope attribute of row or col to define whether they are row or column headings. They
can also be given a value of rowgroup or colgroup if they relate to more than one row or
column.

<thead>
<tr>
<th id="playlistPosHead" scope="col">Playlist Position</th>
<th scope="col">Track Name</th>
<th scope="col">Artist</th>
<th scope="col">Album</th>
</tr>

</thead>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

114

6145_Ch06 1/11/06 5:52 PM Page 114

col and colgroups
While the tr element allows developers to apply styles to whole rows, it is much more dif-
ficult to apply a style to an entire column. To get around this problem, the W3C intro-
duced the colgroup and col elements. Colgroups are a way of defining and grouping one
or more columns using the col element. Unfortunately, not many browsers support the
styling of col and colgroup elements.

<colgroup>
<col id="PlaylistCol" />
<col id="trackCol" />
<col id="artistCol" />
<col id="albumCol" />

</colgroup>

Data table markup

Putting all of these (X)HTML elements and attributes together, you can create the basic
outline for the styled table seen in Figure 6-3.

<table cellspacing="0" id="playlistTable" summary="Top 15 songs
played.
Top artists include Cold Play, Yeah Yeah Yeahs, Snow Patrol, Deeper ➥

Water, Kings of Leon, Embrace, Oasis, Franz Ferdinand, Jet, The Bees,➥

Blue States, Kaiser Chiefs and Athlete.">
<caption>Top 15 Playlist</caption>
<colgroup>
<col id="PlaylistCol" />
<col id="trackCol" />
<col id="artistCol" />
<col id="albumCol" />

</colgroup>
<thead>
<tr>
<th id="playlistPosHead" scope="col">Playlist Position</th>
<th scope="col">Track Name</th>
<th scope="col">Artist</th>
<th scope="col">Album</th>

</tr>
</thead>
<tbody>
<tr class="odd">
<td>1</td>
<td>Hide You</td>
<td>Kosheen</td>
<td>Resist</td>

STYLING FORMS AND DATA TABLES

115

6

6145_Ch06 1/11/06 5:52 PM Page 115

</tr>
<tr>
<td>2</td>
<td>.38.45</td>
<td>Thievery Corporation</td>
<td>Sounds From the Thievery Hi-Fi</td>

</tr>
<tr class="odd">
<td>3</td>
<td>Fix You</td>
<td>Cold Play</td>
<td>X&Y</td>

</tr>
…

</tbody>
</table>

Styling the table

The CSS specification has two table border models: separate and collapsed. In the separate
model, borders are placed around individual cells, whereas in the collapsed model cells
share borders. Most browsers default to the separate model, but I personally find the col-
lapsed model to be of more use. As such, one of the first things you will want to do is set
the border-collapse property of your table to collapse. To stop the table from being too
wide you will want to limit its width, and to help define the table area, adding a border is
a good idea. It is also a good idea to give the table cells a little breathing room by apply-
ing a small amount of vertical and horizontal padding.

table {
border-collapse: collapse;
width: 50em;
border: 1px solid #666;

}

th, td {
padding: 0.1em 1em;

}

CSS has a border-padding property that allows you to control the spacing between cells.
Unfortunately, this property is not understood by IE 6 and below for Windows, rendering
its use fairly limited. Instead, to remove the default padding between cells you will have to
fall back on the old but reliable cellspacing property. This property is, strictly speaking,
presentational in nature. However, it is still valid (X)HTML and is currently the only means
of controlling cell spacing in IE 6/Win.

<table cellspacing="0" id="playlistTable" summary="Top 15 songs…">

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

116

6145_Ch06 1/11/06 5:52 PM Page 116

Adding the visual style

The groundwork has been set, so it is now time to start adding the visual interest. To make
the table caption look a little more like a regular heading, you can increase the font size
and make it bold. You can also give the caption some breathing room by applying a top
and bottom margin.

caption {
font-size: 1.2em;
font-weight: bold;
margin: 1em 0;

}

It would be nice to give the columns some definition by applying a light border to them.
This can be done by applying a right border to all of the col elements and then removing
this border from the last element:

col {
border-right: 1px solid #ccc;

}

col#albumCol {
border: none;

}

Unfortunately, as mentioned earlier, not many browsers support this method. Therefore, if
column borders are important to your design, you will probably need to apply them on
individual cells instead. The problem with this approach is that you will then need to add
a class to the last cell in each row, in order to turn the last border off. This is annoying but
necessary if your design calls for it.

To distinguish the initial row of table headings, you can apply a small tiling image as a
background to the thead element. A slightly darker top and bottom border is added to
this element as well. Table headings are usually centered and emboldened by default. If
you want, you can override this style.

thead {
background: #ccc url(images/bar.gif) repeat-x left center;
border-top: 1px solid #a5a5a5;
border-bottom: 1px solid #a5a5a5;

}

th {
font-weight: normal;
text-align: left;

}

STYLING FORMS AND DATA TABLES

117

6

6145_Ch06 1/11/06 5:52 PM Page 117

From a visual point of view, you may not want to display the “track number” heading, but
you will want it to be available for screenreader users. To hide this heading, you can sim-
ply give the particular table heading a large negative text indent:

#playlistPosHead {
text-indent: -1000em;

}

Added extras

The table should really be taking shape by now. To provide the alternating blue and white
lines, a class of odd has been applied to each odd-numbered row. Those rows are then
styled with a blue background:

.odd {
background-color: #edf5ff;

}

When CSS 3 selectors finally arrive, you will be able to create alternating styles without
needing to add markup, using the :nth-child selector:

tr:nth-child(odd) {
background-color: #edf5ff;

}

Unfortunately at the time of writing, no major browser supports this selector. Instead, if
you don’t want to manually add a class to each alternating row in your (X)HTML, you could
apply the class using the DOM. For more information on this and many other DOM script-
ing techniques, check out Dom Scripting: Web Design with JavaScript and the Document
Object Model, by Jeremy Keith (friends of ED, 2005; www.domscripting.com).

Finally, you can create some extra visual feedback by allowing the rows to change color
when they are hovered over. However, you do not want the row containing the table head-
ings to change color, so this needs to be overridden:

tr:hover {
background-color:#3d80df;
color: #fff;

}

thead tr:hover {
background-color: transparent;
color: inherit;

}

Unfortunately, IE 6 and below does not support the :hover dynamic pseudo-class on any
elements other than the anchor element. However, as this is an embellishment rather than
an important feature, it is not much of a problem. Users of more modern browsers will
appreciate the added usability benefits, while those using IE 6 and below will be unaware
that they are missing anything.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

118

6145_Ch06 1/11/06 5:52 PM Page 118

You now have a beautifully styled data table that is easy for both sighted users and those
using assistive devices to use and understand.

Simple form layout
Short and relatively simple forms are easiest to fill in when the form labels appear verti-
cally above their associated form elements. Users can simply move down the form step by
step, reading each label and completing the following form element. This method works
best on short forms collecting relatively simple and predictable information such as con-
tact details (see Figure 6-4).

Figure 6-4. Simple form layout

Useful form elements

HTML provides a number of useful elements that can help add structure and meaning to a
form. The first one of these is the fieldset element. Fieldsets are used for grouping
related blocks of information. In Figure 6-4, two fieldsets are being used: one for the
contact details and one for the comments. Most user agents apply a thin border around
fieldsets, which can be turned off by setting the border property to none. Unfortunately,
Opera 7 and below has somewhat buggy fieldset behavior and the only way to turn
borders off is to set them to be transparent:

fieldset {
border: solid 0 transparent;

}

STYLING FORMS AND DATA TABLES

119

6

6145_Ch06 1/11/06 5:52 PM Page 119

To identify the purpose of each fieldset, you can use a legend element. Legends act a lit-
tle like a fieldset’s heading, usually appearing vertically centered with the top of the
fieldset and indented a little to the right. Unfortunately, legends are notoriously difficult
to style because of the inconsistent way browsers place them. Some browsers, like Firefox
and Safari, use padding to create a small indent. However, other browsers, such as Opera
and IE, have large default indents that are not controllable using padding, margins, or even
positioning. As such, if you choose to use legends you will have to accept a certain amount
of variation between browsers.

Form labels
Lastly, the label element can help add structure and increase the accessibility of your
forms. As the name suggests, this element is used to add a meaningful and descriptive
label to each form element. In many browsers, clicking on the label element will cause the
associated form element to gain focus. The real benefit of using labels is to increase form
usability for people using assistive devices. If a form uses labels, screenreaders will cor-
rectly associate a form element with its label. Without labels, the screenreader will have to
“guess” which text relates to which form element, sometimes getting it wrong.
Screenreader users can also bring up a list of all the labels in a form, allowing them to
audibly scan through the form in much the same way a sighted user would.

Associating a label with a form is very easy and can be done in one of two ways: either
implicitly, by nesting the form element inside the label element:

<label>email <input name="email" type="text"/><label>

or explicitly by setting the for attribute of the label equal to the id name of the associ-
ated form element:

<label for="email">email<label>
<input name="email" id="email" type="text"/>

You will notice that this input, and all the form controls in this chapter, contain both a
name and an id attribute. The id attribute is required to create the association between the
form input and the label, while the name is required so that the form data can be sent back
to the server.

Labels associated with form controls using the for attribute don’t need to be near those
controls in the source code; they could be in a completely different part of the document.
However, from a structural point of view this isn’t wise, and should be avoided unless there
is a compelling reason to do so.

The basic layout

Using these three structural elements you can start laying out your form by marking up
the contents of the first fieldset. The unstyled form can be seen in Figure 6-5.

<fieldset>
<legend>Your Contact Details</legend>
<p>
<label for="author">Name:</label>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

120

6145_Ch06 1/11/06 5:52 PM Page 120

<input name="author" id="author" type="text" />
</p>
<p>
<label for="email">Email Address:</label>
<input name="email" id="email" type="text" />

</p>
<p>
<label for="url">Web Address:</label>
<input name="url" id="url" type="text" />

</p>
</fieldset>

Figure 6-5. Unstyled form

First, you will need to set the general styles for the fieldset and legend elements. The
fieldsets must be vertically separated using margins, and the contents can be given
breathing space using padding. To highlight the fieldsets, you can give them a light back-
ground with a slightly darker, 1-pixel border. Try not to make the background too dark,
though, as this can add too much visual weight to the form, making it more difficult to
comprehend. Making the legends bold can also help break up the information and make
it easier to digest.

fieldset {
margin: 1em 0;
padding: 1em;
border : 1px solid #ccc;
background: #f8f8f8;

}

legend {
font-weight: bold;

}

This example sees form labels and elements nested inside paragraph elements.
With CSS turned off, the form is still legible as each row is visually separated by
whitespace. However, there is some discussion as to whether paragraphs should
be used in form layouts, as they are not paragraphs of text. If in doubt, you can
always use div elements instead.

STYLING FORMS AND DATA TABLES

121

6

6145_Ch06 1/11/06 5:52 PM Page 121

Positioning the labels so they appear vertically above the form elements is actually very
simple. Labels are inline elements by default. However, setting their display property to
block will cause them to generate their own block box, forcing the input elements onto
the line below. The width of text input boxes varies from browser to browser, so for con-
sistency you should explicitly set the width of your text input boxes. In this example pixels
are used, but you could of course use ems to create a more scalable form layout.

label {
display: block;

}

input {
width: 200px;

}

Other elements

This layout works equally well for other form elements such as text areas:

<fieldset>
<legend>Comments</legend>
<p>
<label for="text">Message: </label>
<textarea name="text" id="text" cols="20" rows="10">
</textarea>

</p>
</fieldset>

The dimensions of text areas also vary across browsers, so it is a good idea to set their
widths and heights for consistency also:

textarea {
width: 300px;
height: 100px;

}

Unlike text areas and text inputs, radio buttons and check boxes need to be handled dif-
ferently. Rather than having their labels above them, these elements usually have their
labels to the right of them. When stacked vertically all the elements are left aligned, creat-
ing a nice solid vertical and making them easier to select (see Figure 6-6).

Figure 6-6. Radio button layout

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

122

6145_Ch06 1/11/06 5:52 PM Page 122

Earlier in this example, the width of the text boxes was defined by applying a width to the
input element. However, the input element covers other form widgets such as check
boxes, radio buttons, and submit buttons, as well as the more common text input box. As
such, by setting the input element to be 200 pixels wide, all of the input elements will be
200 pixels.

One way around this problem is to use the attribute selector to target particular types of
form element. So instead of setting all the inputs to 200 pixels, you could specifically tar-
get text inputs:

input[type="text"] {
width: 200px;

}

Unfortunately, the attribute selector is only supported on more modern browsers and
does not work in IE 6 and below. Until the attribute selector is more widely supported; the
best way to distinguish between input elements is to give them a class.

So for instance, in this example you could give radio buttons a class name of radio:

<fieldset>
<legend>Remember Me</legend>
<p>
<input id="remember-yes" class="radio" name="remember" type="radio"➥

value="yes" />
<label for="remember-yes">Yes</label>

</p>
<p>
<input id="remember-no" class="radio" name="remember" type="radio"➥

value="no" checked="checked" />
<label for="remember-no">No</label>

</p>
</fieldset>

You could then override the previously set input width by setting the width of radio but-
tons to auto. The same can be done for check boxes and submit buttons:

input.radio, input.checkbox, input.submit {
width: auto;

}

Floating the radio buttons left will bring them back on the same level as their labels, and a
small amount of right margin will provide the desired spacing between the two elements:

input.radio {
float: left;
margin-right: 1em;

}

STYLING FORMS AND DATA TABLES

123

6

6145_Ch06 1/11/06 5:52 PM Page 123

Embellishments

The layout is now complete, but you can incorporate a few nice additions for more
advanced browsers. For instance, you could help users easily anchor themselves to the
form field they are filling in by changing the element’s background color when it receives
focus:

input:focus, textarea:focus {
background: #ffc;

}

You can also harmonize the look of the text field and text area elements by giving them
custom borders. This is particularly useful for Firefox, which renders the bottom and right
borders on these elements as white, causing them to lose definition when on a white back-
ground (see Figure 6-7).

Figure 6-7. The bottom and left borders of text inputs
and text areas in Firefox are white, causing them to lose
definition on white backgrounds.

In this example an attribute selector is used to target the text inputs as this style is mostly
for the benefit of Firefox, which understands this selector.

input[type="text"], textarea {
border-top: 2px solid #999;
border-left: 2px solid #999;
border-bottom: 1px solid #ccc;
border-right: 1px solid #ccc;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

124

6145_Ch06 1/11/06 5:52 PM Page 124

Required fields
Many forms contain fields that must be filled in. You can indicate these required fields by
placing styled text, or an asterisk, next to them. Because this information is emphasizing
the field’s required status, the most appropriate element for this information is an em or
strong element:

<p>
<label for="author">Name:<em class="required">(required)/label>
<input name="author" id="author" type="text" />
</p>

You can then style this information however you want. In this example I’m reducing the
font size and making the text red:

.required {
font-size: 0.75em;
color:#760000;

}

And there you have it: a simple yet attractive-looking form layout using pure CSS.

Complicated form layout
For longer and more complicated forms, vertical space starts to become an issue, as does
the ease of scanning. To improve scanning and reduce the amount of vertical space used,
it makes sense to position the labels and form elements horizontally, rather than vertically
above one another. Creating a form such as the one in Figure 6-8 is actually very simple
and uses almost exactly the same code as the previous example.

Figure 6-8. Horizontal form alignment

STYLING FORMS AND DATA TABLES

125

6

6145_Ch06 1/11/06 5:52 PM Page 125

The only difference between this and the previous example is that, instead of setting the
label to be a block-level element, you float the labels left instead. You also need to give
the label a width so that all of the form elements line up nicely:

label {
float: left;
width: 10em;

}

This width causes a large gap between the radio buttons, so to tighten this up you will
need to set the width on these labels explicitly. In this example all of the input elements in
the “remember me” fieldset are radio buttons. As such, this fieldset can be given an ID
and the width on all the enclosed labels is simply overridden. However, if this was not the
case, you could simply add a class to the labels or their parent paragraphs instead:

#remember-me label {
width: 4em;

}

Forms are rarely as simple as the one in Figure 6-8, and you will often need to create
exceptions to your basic form styling rules to handle things such as multiple form widgets
on a single line, or columns of check boxes or radio buttons (see Figure 6-9). The next
couple of sections will explain how to handle these types of exceptions.

Figure 6-9. More complicated form layouts

Accessible date input

As you learned in the previous examples, form labels are important for the accessibility of
your forms. However, there are situations when you may not want to display a label for
every element. For instance, in Figure 6-9 you can see a group of form elements for col-
lecting date information. In this situation visually displaying each label would be overkill, as
it would split the date of birth up into three separate entities rather than being perceived
as a single entity. However, while you may not want to display the labels, it is still impor-
tant that the labels appear in the source code and are available to screenreaders.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

126

6145_Ch06 1/11/06 5:52 PM Page 126

<p>
<label for="dateOfBirth">Date of Birth:</label>
<input name="dateOfBirth" id="dateOfBirth" type="text" />
<label id="monthOfBirthLabel" for="monthOfBirth">➥

Month of Birth:</label>
<select name="monthOfBirth" id="monthOfBirth">
<option value="1">January</option>
<option value="2">February</option>
<option value="3">March</option>

</select>
<label id="yearOfBirthLabel" for="yearOfBirth">Year of Birth:</label>
<input name="yearOfBirth" id="yearOfBirth" type="text" />

</p>

To create this layout you first need to hide the “month of birth” and “year of birth” labels.
Setting the labels’ display property to none would stop the labels from displaying, but it
would also prevent many screenreaders from accessing them. Instead, you can position
the labels off screen using a large negative text indent. In the generic form style we cre-
ated earlier, labels have been given a set width. To prevent the labels from affecting the
layout, the width needs to be zeroed down for these labels as well:

#monthOfBirthLabel, #yearOfBirthLabel {
text-indent: -1000em;
width: 0;

}

The various form controls can then be sized individually and given margins to control their
horizontal spacing:

input#dateOfBirth {
width: 3em;
margin-right: 0.5em;

}

select#monthOfBirth {
width: 10em;
margin-right: 0.5em;

}

input#yearOfBirth {
width: 5em;

}

STYLING FORMS AND DATA TABLES

127

6

6145_Ch06 1/11/06 5:52 PM Page 127

Multicolumn check boxes

Creating a two-column layout for large groups of check boxes or radio buttons is a little
more involved. Labels only work for individual elements, not groups of elements. Ideally
we would wrap the whole group in a fieldset and use the legend to act like a label for
the group. Unfortunately, due to the inconsistent way browsers handle the positioning of
legends, this is not currently a practical solution. So until the browsers offer more consis-
tent support, the best option is to use a heading element instead.

To create the column effect, the check boxes are split into two sets, and each set is
wrapped in a div. These elements are then grouped together by wrapping them in a
fieldset with a descriptive ID:

<fieldset id="favoriteColor">
<h2>Favorite Color:</h2>
<div>
<p>
<input class="checkbox" id="red" name="red" type="checkbox"➥

value="red" />
<label>red</label>
…

</p>
</div>
<div>
<p>
<input class="checkbox" id="orange" name="orange"

type="checkbox"~CCC
value="orange" />

<label>orange</label>
</p>
…

</div>
<br class="clear" />

</fieldset>

Because a generic fieldset style has already been created, the first thing you need to do
is override those styles, zeroing down the padding and margin, removing the borders and
setting the background color to be transparent:

fieldset#favoriteColor {
margin: 0;
padding: 0;
border: none;
background: transparent;

}

The heading is going to act like a label so it needs to be floated left and given a width of
10ems like the other labels. The headline also needs to look like a label, so the font weight
needs to be set to normal and the font size needs to be reduced. The two-column layout
can then be created by giving the divs a width and floating them left:

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

128

6145_Ch06 1/11/06 5:52 PM Page 128

#favoriteColor h2 {
width: 10em;
float: left;
font-size: 1em;
font-weight: normal;

}

#favoriteColor div {
width: 8em;
float: left;

}

Because the divs are being floated, they no longer take up any space and appear to spill
out of the fieldset (see Figure 6-10).

Figure 6-10. The floated divs spill out of the parent fieldset.

To force the fieldset to enclose these floats, a clearing element has been inserted after
the second div. In this case a
 element is used with a class of clear:

.clear {
clear: both;

}

All the labels in this form have been floated left and set to be 10ems wide. However, the
labels for the check boxes do not need to be floated and require a much smaller width. As
such, you will want to reduce the width of the labels and prevent them from floating.
Firefox seems to treat the unfloated labels as block-level elements, forcing the check
boxes onto the next line. To avoid this problem you need to explicitly set the display
property to inline:

#favoriteColor label {
width: 3em;
float: none;
display: inline;

}

STYLING FORMS AND DATA TABLES

129

6

6145_Ch06 1/11/06 5:52 PM Page 129

The labels and check boxes are now all nicely aligned. However, the default margin on
each paragraph is causing too much vertical space. To tighten up the spacing, you can
reduce the top and bottom margins of the paragraphs:

#favoriteColor p {
margin: 0.3em 0;

}

And there you have a relatively complex form layout. The basic form style takes care of
the general layout, and then exceptions can be handled on an individual basis by overrid-
ing these styles.

Form feedback

Forms will usually require some type of feedback message to highlight fields that have
been missed or incorrectly filled in. This is usually done by adding an error message next
to the appropriate field (see Figure 6-11).

Figure 6-11. Example of form feedback

To produce this effect you could wrap your feedback text in a span and place it after the
text input in the source code. However, for everything to line up correctly, both the span
and the preceding input would need to be floated. This will have an effect on the behav-
ior of the enclosing paragraph, which in turn will have an effect on the whole layout.
Furthermore, many screenreaders will ignore text between form elements, unless they are
enclosed in a label. To avoid these problems, the best approach is to include the error
message text inside the form label, and then position it using CSS:

<p>
<label for="email">Email Address:
Incorrect email address. Please try again.➥

</label>
<input name="email" id="email" type="text" />

</p>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

130

6145_Ch06 1/11/06 5:52 PM Page 130

To position the feedback span, you first need to set the position of all of the paragraphs
in the form to relative, thereby setting up a new positioning context. You can then posi-
tion the feedback span absolutely, so it appears to the right of the text input:

form p {
position: relative;

}

.feedback {
position: absolute;
margin-left: 11em;
left: 200px;
right :0;

}

Rather annoyingly, IE 6 and below incorrectly set the width of the feedback span to be the
minimum width possible. To get around this problem, you need to set an explicit width for
this browser. One way to do this is using the star HTML hack as detailed in Chapter 8:

* html .feedback{
width: 10em;

}

You can then apply whatever styling you want to your feedback messages. In this case I
have made the text bold red, and have applied a warning image to the left side of the
message:

form p {
position: relative;

}

.feedback {
position: absolute;
margin-left: 11em;
left: 200px;
font-weight: bold;
color: #760000;
padding-left: 18px;
background: url(images/error.png) no-repeat left top;

}

You could also use this technique to provide positive feedback or advice on how to fill out
particular parts of the form.

STYLING FORMS AND DATA TABLES

131

6

6145_Ch06 1/11/06 5:52 PM Page 131

Summary
In this chapter you have learned how different form layouts can work in different situa-
tions. You can now lay out complicated forms using CSS, without harming a single table in
the process. You have learned how tables should be used, for data rather than layout, and
have learned that data table design can be fun.

In the next chapter you will use everything you have learned so far to start building
CSS-based layouts.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

132

6145_Ch06 1/11/06 5:52 PM Page 132

7 LAYOUT

20px

20px

Background positioning using px

(0,0)x

6145_Ch07 1/11/06 5:53 PM Page 133

One of the major benefits of CSS is the ability to control page layout without needing to
use presentational markup. However, CSS layout has gained a rather undeserved reputa-
tion of being difficult, particularly among those new to the language. This is partly due to
browser inconsistencies, but mostly due to a proliferation of different layout techniques
available on the Web. It seems that every CSS author has their own technique for creating
multicolumn layouts, and new CSS developers will often use a technique without really
understanding how it works. This “black box” approach to CSS layout may get quick
results, but ultimately stunts the developer’s understanding of the language.

All these CSS layout techniques rely on three basic concepts: positioning, floating, and
margin manipulation. The different techniques really aren’t that different, and if you
understand the core concepts, it is relatively easy to create your own layouts with little or
no hassle.

In this chapter you will learn about

Horizontally centering a design on a page

Creating two- and three-column float-based layouts

Creating fixed-width, liquid, and elastic layouts

Making columns stretch to the full height of the available space

Centering a design
Long lines of text can be difficult and unpleasant to read. As modern monitors continue to
grow in size, the issue of screen readability is becoming increasingly important. One way
designers have attempted to tackle this problem is by centering their designs. Rather than
spanning the full width of the screen, centered designs span only a portion of the screen,
creating shorter and easier-to-read line lengths.

Centered designs are very fashionable at the moment, so learning how to center a design
in CSS is one of the first things most developers want to learn. There are two basic meth-
ods for centering a design: one uses auto margins and the other uses positioning and neg-
ative margins.

Centering a design using auto margins

Say you have a typical layout where you wish to center a wrapper div horizontally on the
screen:

<body>
<div id="wrapper">
</div>

</body>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

134

6145_Ch07 1/11/06 5:53 PM Page 134

To do this you simply define the width of your wrapper div and then set the horizontal
margins to auto:

#wrapper {
width: 720px;
margin: 0 auto;

}

In this example I have decided to fix the width of my wrapper div in pixels, so that it fits
nicely on an 800✕600 resolution screen. However, you could just as easily set the width as
a percentage of the body or relative to the size of the text using ems.

This works on all modern browsers. However, IE 5.x and IE 6 in quirks mode doesn’t honor
auto margins. Luckily, IE misunderstands text-align: center, centering everything
instead of just the text. You can use this to your advantage by centering everything in the
body tag, including the wrapper div, and then realigning the contents of the wrapper back
to the left:

body {
text-align: center;

}

#wrapper {
width: 720px;
margin: 0 auto;
text-align: left;

}

Using the text-align property in this way is a hack—but a fairly innocuous hack that has
no adverse effect on your code. The wrapper now appears centered in IE as well as more
standards-compliant browsers (see Figure 7-1).

Figure 7-1. Centering a design using auto margins

LAYOUT

135

7

6145_Ch07 1/11/06 5:53 PM Page 135

There is one final thing that needs to be done in order for this method to work smoothly
in all browsers. In Netscape 6, when the width of the browser window is reduced below
the width of the wrapper, the left side of the wrapper spills off the side of the page and
cannot be accessed. To keep this from happening, you need to give the body element a
minimum width equal to or slightly wider than the width of the wrapper element:

body {
text-align: center;
min-width: 760px;

}

#wrapper {
width: 720px;
margin: 0 auto;
text-align: left;

}

Now if you try to reduce the width of the window below the width of the wrapper div,
scroll bars will appear, allowing you to access all of the content.

Centering a design using positioning
and negative margins

The auto margin method of centering is by far the most common approach, but it does
involve using a hack to satisfy IE 5.x. It also requires you to style two elements rather than
just the one. Because of this, some people prefer to use positioning and negative margins
instead.

You start as you did before, by defining the width of the wrapper. You then set the
position property of the wrapper to relative and set the left property to 50%. This will
position the left edge of the wrapper in the middle of the page.

#wrapper {
width: 720px;
position: relative;
left: 50%;

}

However, you don’t want the left edge of the wrapper centered—you want the middle of
the wrapper centered. You can do this by applying a negative margin to the left side of the
wrapper, equal to half the width of the wrapper. This will move the wrapper half its width
to the left, centering it on screen:

#wrapper {
width: 720px;
position: relative;
left: 50%;
margin-left: -360px;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

136

6145_Ch07 1/11/06 5:53 PM Page 136

Your choice of centering technique comes down to personal taste. However, it is always
useful to have several techniques up your sleeve, as you never know when one may come
in handy.

Float-based layouts
There are a few different ways of doing CSS-based layout, including absolute positioning
and using negative margins. I find float-based layouts the easiest method to use. As the
name suggests, in a float-based layout you simply set the width of the elements you want
to position, and then float them left or right.

Because floated elements no longer take up any space in the flow of the document, they
no longer appear to exert any influence on the surrounding block boxes. To get around
this, you will need to clear the floats at various points throughout the layout. Rather than
continuously floating and clearing elements, it is quite common to float nearly everything,
and then clear once or twice at strategic points throughout the document, such as the
page footer.

Two-column floated layout

To create a simple two-column layout using floats, you need to start off with a basic
(X)HTML framework. In this example the (X)HTML consists of a branding area, a content
area, an area for the main navigation, and finally a page footer. The whole design is
enclosed in a wrapper div, which will be horizontally centered using one of the preceding
methods:

<div id="wrapper">
<div id="branding">
...

</div>
<div id="content">
...

</div>
<div id="mainNav">
...

</div>
<div id="footer">
...

</div>
</div>

The main navigation for this design will be on the left side of the page and the content will
be on the right. However, I have chosen to put the content area above the navigation in
the source order for usability and accessibility reasons. First, the main content is the most
important thing on the page and so should come first in the document. Second, there is
no point forcing screenreader users to trawl through a potentially long list of links before
they get to the content if they don’t have to.

LAYOUT

137

7

6145_Ch07 1/11/06 5:53 PM Page 137

Normally when people create float-based layouts, they float both columns left, and then
create a gutter between the columns using margin or padding. When using this approach,
the columns are packed tightly into the available space with no room to breathe. Although
this wouldn’t be a problem if browsers behaved themselves, buggy browsers can cause
tightly packed layouts to break, forcing columns to drop below each other.

This can happen on IE because IE/Win honors the size of an element’s content, rather than
the size of the element itself. In standards-compliant browsers, if the content of an ele-
ment gets too large, it will simply flow out of the box. However, on IE/Win, if the content
of an element becomes too big, the whole element expands. If this happens in very tightly
packed layouts, there is no longer enough room for the elements to sit next to each other,
and one of the floats will drop. Other IE bugs, such as the 3-pixel text jog bug and the
double-margin float bug (see Chapter 9), can also cause float dropping.

To prevent this from happening, you need to avoid cramming floated layouts into their
containing elements. Rather than using horizontal margin or padding to create gutters,
you can create a virtual gutter by floating one element left and one element right (see
Figure 7-2). If one element inadvertently increases in size by a few pixels, rather than
immediately running out of horizontal space and dropping down, it will simply grow into
the virtual gutter.

Figure 7-2. Creating a two-column layout using floats

The CSS for achieving this layout is very straightforward. You simply set the desired width
of each column, then float the navigation left and the content right:

#content {
width: 520px;
float: right;

}

#mainNav {
width: 180px;
float: left;

}

float: left float: right

clear: both

#mainNav #content

#footer

#wrapper

Virtual gutter

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

138

6145_Ch07_3P 3/29/06 4:55 PM Page 138

Then, to ensure that the footer is positioned correctly below the two floats, the footer
needs to be cleared:

#footer {
clear: both;

}

The basic layout is now complete. Just a few small tweaks are required to tidy things up.
First, the content in the navigation area is flush to the edges of the container and needs
some breathing room. You could add horizontal padding directly to the navigation ele-
ment, but this will invoke IE 5.x’s proprietary box model. To avoid this, add the horizontal
padding to the navigation area’s content instead:

#mainNav {
padding-top: 20px;
padding-bottom: 20px;

}

#mainNav li {
padding-left: 20px;
padding-right: 20px;

}

The right side of the content area is also flush to the right edge of its container and needs
some breathing room. Again, rather than apply padding directly to the element, you can
apply padding to the content and avoid having to deal with IE’s box model problems:

#content h1, #content h2, #content p {
padding-right: 20px;

}

And there you have it: a simple, two-column CSS layout (see Figure 7-3).

Figure 7-3. Floated two-column layout

LAYOUT

139

7

6145_Ch07_3P 3/29/06 4:56 PM Page 139

Three-column floated layout

The HTML needed to create a three-column layout is very similar to that used by the two-
column layout, the only difference being the addition of two new divs inside the content
div: one for the main content and one for the secondary content.

<div id="content">
<div id="mainContent">
…
</div>
<div id="secondaryContent">
…
</div>
</div>

Using the same CSS as the two-column technique, you can float the main content left and
the secondary content right, inside the already floated content div (see Figure 7-4). This
essentially divides the second content column in two, creating your three-column effect.

Figure 7-4. Creating a three-column layout by dividing the
content column into two columns

As before, the CSS for this is very simple. You just set your desired widths and then float
the main content left and the secondary content right:

#mainContent {
width: 320px;
float: left;

}

#secondaryContent {
width: 180px;
float: right;

}

float: left float: right

#mainContent

#footer

#mainNav #content

#secondaryContent

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

140

6145_Ch07 1/11/06 5:53 PM Page 140

You can tidy up the layout slightly by removing the padding from the content element and
applying it to the content of the secondary content instead:

#secondaryContent h1, #secondaryContent h2,
#secondaryContent p {
padding-left: 20px;
padding-right: 20px;

}

This leaves you with a nice and solid three-column layout (see Figure 7-5).

Figure 7-5. Three-column layout using floats

Fixed-width, liquid, and elastic layout
So far, all the examples have used widths defined in pixels. This type of layout is known as
fixed-width layout, or sometimes “ice layout” due to its rigid nature. Fixed-width layouts
are very common as they give the developer more control over layout and positioning. If
you set the width of your design to be 720 pixels wide, it will always be 720 pixels. If you
then want a branding image spanning the top of your design, you know it needs to be 720
pixels wide to fit. Knowing the exact width of each element allows you to lay them out
precisely and know where everything will be. This predictability makes fixed-width layout
by far the most common layout method around.

However, fixed-width designs have their downsides. First, because they are fixed, they are
always the same size no matter what your window size. As such, they don’t make good use of
the available space. On large screen resolutions, designs created for 800✕600 can appear tiny
and lost in the middle of the screen. Conversely, a design created for a 1024✕760 screen will
cause horizontal scrolling on smaller screen resolutions. With an increasingly diverse range of
screen sizes to contend with, fixed-width design is starting to feel like a poor compromise.

Another issue with fixed-width design revolves around line lengths and text legibility.
Fixed-width layouts usually work well with the browser default text size. However, you only

LAYOUT

141

7

6145_Ch07_3P 3/29/06 4:57 PM Page 141

have to increase the text size a couple of steps before sidebars start running out of space
and the line lengths get too short to comfortably read.

To work around these issues, you could choose to use liquid or elastic layout instead of
fixed-width layout.

Liquid layouts

With liquid layouts, dimensions are set using percentages instead of pixels. This allows liq-
uid layouts to scale in relation to the browser window. As the browser window gets bigger,
the columns get wider. Conversely, as the window gets smaller, the columns will reduce in
width. Liquid layouts make for very efficient use of space, and the best liquid layouts aren’t
even noticeable.

However, liquid layouts are not without their own problems. At small window widths, line
lengths can get incredibly narrow and difficult to read. This is especially true in multicol-
umn layouts. As such, it may be worth adding a min-width in pixels or ems to prevent the
layout from becoming too narrow.

Conversely, if the design spans the entire width of the browser window, line lengths can
become long and difficult to read. There are a couple of things you can do to help avoid
this problem. First, rather than spanning the whole width, you could make the wrapper
span just a percentage—say, 85 percent. You could also consider setting the padding and
margin as percentages as well. That way, the padding and margin will increase in width in
relation to the window size, stopping the columns from getting too wide, too quickly.
Lastly, for very severe cases, you could also choose to set the maximum width of the wrap-
per in pixels to prevent the content from getting ridiculously wide on oversized monitors.

You can use these techniques to turn the previous fixed-width, three-column layout into a
fluid, three-column layout. Start by setting the width of the wrapper as a percentage of
the overall width of the window. In this example I have chosen 85 percent as it produces
good results on a range of screen sizes. Next, set the width of the navigation and content
areas as a percentage of the wrapper width. After a bit of trial and error, setting the navi-
gation area to be 23 percent and the content area to 75 percent produced nice results.
This leaves a 2-percent virtual gutter between the navigation and the wrapper to deal with
any rounding errors and width irregularities that may occur:

#wrapper {
width: 85%;

}

#mainNav {
width: 23%;

Be aware that IE 5.x on Windows incorrectly calculates padding in relation to
the width of the element rather than the width of the parent element. Because
of this, setting padding as a percentage can produce inconsistent results in
those browsers.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

142

6145_Ch07 1/11/06 5:53 PM Page 142

float: left;
}

#content {
width: 75%;
float: right;

}

You then need to set the widths of the columns in the content area. This gets a bit trickier
as the widths of the content divs are based on the width of the content element and not
the overall wrapper. If you want the secondaryContent to be the same width as the main
navigation, you need to work out what 23 percent of the wrapper is in terms of the width
of the content area. This is 23 (width of the nav) divided by 75 (width of the content area),
multiplied by 100—which works out at around 31 percent. You will want the gutter
between the content columns to be the same width as the gutter between the navigation
and content areas. Using the same method, this works out to be around 3 percent, mean-
ing that the width of the main content area should be 66 percent:

#mainContent {
width: 66%;
float: left;

}

#secondaryContent {
width: 31%;
float: right;

}

This produces a liquid layout that is optimal at 1024✕780 but is comfortable to read at
both larger and smaller screen resolutions (see Figure 7-6).

Figure 7-6. Three-column liquid layout at 800✕600, 1024✕768, and 1152✕900

LAYOUT

143

7

6145_Ch07 1/11/06 5:53 PM Page 143

Because this layout scales so nicely, there isn’t any need to add a max-width property.
However, the content does start to get squashed at smaller sizes, so you could set a mini-
mum width of 720px on the wrapper element if you liked.

Elastic layouts

While liquid layouts are useful for making the most of the available space, line lengths can
still get uncomfortably long on large resolution monitors. Conversely, lines can become
very short and fragmented in narrow windows or when the text size is increased a couple
of steps. If this is a concern, then elastic layouts may be a possible solution.

Elastic layouts work by setting the width of elements relative to the font size instead of the
browser width. By setting widths in ems, you ensure that when the font size is increased
the whole layout scales. This allows you to keep line lengths to a readable size and is par-
ticularly useful for people with reduced vision or cognitive disorders.

Like other layout techniques, elastic layouts are not without their problems. Elastic layouts
share some of their problems with fixed-width layouts, such as not making the most use of
the available space. Also, because the whole layout increases when the text size is
increased, elastic layouts can become much wider than the browser window, forcing the
appearance of horizontal scroll bars. To combat this, it may be worth adding a max-width
of 100% to the body tag. max-width isn’t currently supported by IE 6 and below, but it is
supported by standards-compliant browsers such as Safari and Firefox.

Elastic layouts are much easier to create than liquid layouts as all of the HTML elements
essentially stay in the same place relative to each other; they just all increase in size.
Turning a fixed-width layout into an elastic layout is a relatively simple task. The trick is to
set the base font size so that 1em roughly equals 10 pixels.

The default font size on most browsers is 16 pixels. Ten pixels works out at 62.5 percent of
16 pixels, so setting the font size on the body to 62.5% does the trick:

body {
font-size: 62.5%;

}

Because 1em now equals 10 pixels at the default font size, we can convert our fixed-width
layout into an elastic layout by converting all the pixel widths to em widths:

#wrapper {
width: 72em;
margin: 0 auto;
text-align: left;

}

#mainNav {
width: 18em;
float: left;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

144

6145_Ch07_3P 4/3/06 4:21 PM Page 144

#content {
width: 52em;
float: right;

}

#mainContent {
width: 32em;
float: left;

}

#secondaryContent {
width: 18em;
float: right;

}

This produces a layout that looks identical to the fixed-width layout at regular text sizes
(see Figure 7-7), but scales beautifully as the text size is increased (see Figure 7-8).

Figure 7-7. Elastic layout at the default text size

Figure 7-8. Elastic layout after the text size has been increased a
few times

LAYOUT

145

7

6145_Ch07 1/11/06 5:53 PM Page 145

Elastic-liquid hybrid

Lastly, you could choose to create a hybrid layout that combines both elastic and liquid
techniques. This hybrid approach works by setting the widths in ems, then setting the max-
imum widths as percentages:

#wrapper {
width: 72em;
max-width: 100%;
margin: 0 auto;
text-align: left;

}

#mainNav {
width: 18em;
max-width: 23%;
float: left;

}

#content {
width: 52em;
max-width: 75%;
float: right;

}

#mainContent {
width: 32em;
max-width: 66%;
float: left;

}

#secondaryContent {
width: 18em;
max-width: 31%;
float: right;

}

On browsers that support max-width, this layout will scale relative to the font size but will
never get any larger than the width of the window (see Figure 7-9).

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

146

6145_Ch07 1/11/06 5:53 PM Page 146

Figure 7-9. The elastic-liquid hybrid layout never scales larger than the
browser window.

Liquid and elastic images

If you choose to use a liquid or an elastic layout, fixed-width images can have a drastic
effect on your design. When the width of the layout is reduced, images will shift and may
interact negatively with each other. Images will create natural minimum widths, preventing
some elements from reducing in size. Other images will break out of their containing ele-
ments, wreaking havoc on finely tuned designs. Increasing the width of the layout can also
have dramatic consequences, creating unwanted gaps and unbalancing designs. But never
fear—there are a few ways to avoid such problems.

For images that need to span a wide area, such as those found in the site header or brand-
ing areas, consider using a background image rather than an image element. As the
branding element scales, more or less of the background image will be revealed:

#branding {
height: 171px;
background: url(images/branding.png) no-repeat left top;

}

<div id="branding"></div>

LAYOUT

147

7

6145_Ch07 1/11/06 5:53 PM Page 147

If the image needs to be on the page as an image element, try setting the width of the
container element to 100% and the overflow property to hidden. The image will be trun-
cated so that it fits inside the branding element but will scale as the layout scales:

#branding {
width: 100%;
overflow: hidden;

}

<div id="branding">

</div>

For regular content images, you will probably want them to scale vertically as well as
horizontally to avoid clipping. You can do this by adding an image element to the page
without any stated dimensions. You then set the percentage width of the image, and add a
max-width the same size as the image to prevent pixelization.

For example, say you wanted to create a news story style with a narrow image column on
the left and a larger text column on the right. The image needs to be roughly a quarter of
the width of the containing box, with the text taking up the rest of the space. You can do
this by simply setting the width of the image to 25% and then setting the max-width to be
the size of the image—in this case 200 pixels wide:

.news img {
width: 25%;
max-width: 200px;
float: left;
padding: 2%;

}

.news p {
width: 68%;
float: right;
padding: 2% 2% 2% 0;

}

As the news element expands or contracts, the image and paragraphs will also expand
or contract, maintaining their visual balance (see Figure 7-10). However, on standards-
compliant browsers, the image will never get larger than its actual size.

Remember that max-width only works in more modern browsers such as Safari
and Firefox. If you are concerned about the image pixelating in older browsers,
make the image as large as you will ever need it to be.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

148

6145_Ch07_3P 4/5/06 1:14 PM Page 148

Figure 7-10. Giving images a percentage width allows them to scale nicely in relation to their
surroundings.

Faux columns
You may have noticed that the navigation and secondary content areas on all these layouts
have been given a light gray background. Ideally the background would stretch the full
height of the layout, creating a column effect. However, because the navigation and sec-
ondary content areas don’t span the full height, neither do their backgrounds.

To create the column effect, you need to create fake columns by applying a repeating
background image to an element that does span the full height of the layout, such as a
wrapper div. Dan Cederholm coined the term “faux column” to describe this technique.

LAYOUT

149

7

6145_Ch07 1/11/06 5:53 PM Page 149

Starting with the fixed-width, two-column layout, you can simply apply a vertically repeat-
ing background image, the same width as the navigation area, to the wrapper element (see
Figure 7-11):

#wrapper {
background: #fff url(images/nav-bg-fixed.gif) repeat-y left top;

}

Figure 7-11. Faux fixed-width column

For the three-column fixed width layout, you can use a similar approach. This time, how-
ever, your repeating background image needs to span the whole width of the wrapper and
include both columns (see Figure 7-12). Applying this image in the same way as before
creates a lovely faux two-column effect (see Figure 7-13).

Figure 7-12. Background image used to create the faux three-column effect

Figure 7-13. Faux three-column effect

Creating faux columns for fixed-width designs is relatively easy, as you always know the
size of the columns and their position. Creating faux columns for fluid layouts is a little
more complicated; the columns change shape and position as the browser window is

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

150

6145_Ch07 1/11/06 5:53 PM Page 150

scaled. The trick to fluid faux columns lies in the use of percentages to position the back-
ground image.

If you set a background position using pixels, the top-left corner of the image is positioned
from the top-left corner of the element by the specified number of pixels. With percent-
age positioning, it is the corresponding point on the image that gets positioned. So if you
set a vertical and horizontal position of 20 percent, you are actually positioning a point 20
percent from the top left of the image, 20 percent from the top left of the parent element
(see Figure 7-14).

Figure 7-14. When positioning using percentages, the corresponding position on the image is used.

This is very useful as it allows you to create background images with the same horizontal
proportions as your layout, and then position them where you want the columns to appear.

To create a faux column for the navigation area, you start by creating a very wide back-
ground image. In this example, I have created an image that is 2000 pixels wide and 5 pix-
els high. Next you need to create an area on the background image to act as the faux
column. The navigation element has been set to be 23 percent of the width of the wrap-
per, so you need to create a corresponding area on the background image that is 23 per-
cent wide. For a background image that is 2000 pixels wide, the faux column part of the
image needs to be 460 pixels wide. Output this image as a GIF, making sure that the area
not covered by the faux column is transparent.

The right edge of the faux column is now 23 percent from the left side of the image. The
right edge of the navigation element is 23 percent from the left edge of the wrapper ele-
ment. That means if you apply the image as a background to the wrapper element, and set
the horizontal position to be 23 percent, the right edge of the faux column will line up
perfectly with the right edge of the navigation element.

#wrapper {
background: #fff url(images/nav-faux-column.gif) repeat-y 23% 0;

}

You can create the background for the secondary content area using a similar method. The
left edge of this faux column should start 77 percent from the left edge of the image,

20px 20%

20px 20%

(20%, 20%)x

Background positioning using px Background positioning using %

(0,0)x

LAYOUT

151

7

6145_Ch07 1/11/06 5:53 PM Page 151

matching the position of the secondaryContent element relative to the wrapper. Because
the wrapper element already has a background image applied to it, you will need to add a
second wrapper element inside the first. You can then apply your second faux column
background image to this new wrapper element.

#wrapper2 {
background: url(images/secondary-faux-column.gif) repeat-y 77% 0;

}

If you have worked out your proportions correctly, you should be left with a beautiful three-
column liquid layout with columns that stretch the height of the wrapper (see Figure 7-15).

Figure 7-15. Faux three-column layout

Summary
In this chapter you learned how to create simple two- and three-column fixed-width lay-
outs using floats. You then learned how these layouts could be converted into liquid and
elastic layouts with relative ease. You learned about some of the problems associated with
liquid and elastic layouts and how liquid images and hybrid layouts can help solve some of
these problems. Lastly, you saw how to create full height column effects on both fixed-
width and liquid layouts, using vertically repeating background images. This chapter
touched on some of the techniques used to create CSS-based layouts. However, there are
a lot of techniques out there, enough to fill a whole book of their own.

One of the big problems developers face with CSS layouts is that of browser inconsistency.
To get around browser rendering issues, various hacks and filters have been created. In the
next chapter, you will learn about some of the better-known hacks and how to use them
responsibly.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

152

6145_Ch07_3P 3/29/06 4:59 PM Page 152

8 HACKS AND FILTERS

6145_Ch08 1/11/06 5:53 PM Page 153

In an ideal world, properly coded CSS would work in every browser with CSS support.
Unfortunately, we do not live in an ideal world, and browsers are littered with bugs and
inconsistencies. To create pages that displayed the same across a variety of browsers, CSS
developers had to get creative. By using bugs and unimplemented CSS, developers were
able to selectively apply different rules to different browsers. Hacks and filters are a pow-
erful weapon in a CSS developer’s arsenal. However, with great power comes great respon-
sibility. It is important to know about the various common hacks and how they work, but
it is equally important to know when and when not to use them.

In this chapter you will learn about

The difference between hacks and filters

Good versus bad filters and how to use them responsibly

IE conditional comments

The star HTML filter

The commented backslash filter and the Holly hack

The backslash filter and the modified simplified box model hack (MSBMH)

The !important and underscore filters

The child and attribute filters

An introduction to hacks and filters
A CSS filter is a way of displaying or hiding rules or declarations from a particular browser
or group of browsers. Filters rely on weaknesses in a browser such as parsing bugs and
unimplemented or incorrectly implemented CSS to show or hide rules from that browser.

A CSS hack is simply an ugly and inelegant way of getting a browser to behave the way you
want it to. CSS hacks are typically used to get around specific browser bugs such as IE’s
proprietary box model. Unfortunately, the term hack has rather negative connotations and
implies that there is a better way of doing something when often there isn’t. Therefore,
some people favor the term patch to indicate that it is actually incorrect browser behavior
that is being dealt with.

CSS hacks can use filters to apply one rule to one browser and a different rule to another.
Alternatively, hacks can use incorrect CSS implementation to “trick” browsers into behav-
ing the way you want them to. In essence, a CSS filter is a specific type of hack used for fil-
tering different browsers. Unfortunately, most people tend to use the generic term hack
to describe filters. As such, when people talk about CSS hacks, they are usually talking
specifically about filters.

A warning about hacks and filters

As a language, CSS was designed to be very forward compatible. If a browser doesn’t
understand a particular selector, it will ignore the whole rule. Likewise, if it doesn’t under-
stand a particular property or value, it will ignore the whole declaration. This feature

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

154

6145_Ch08 1/11/06 5:53 PM Page 154

means that the addition of new selectors, properties, and values should have no adverse
effect on older browsers.

You can use this feature to supply rules and declarations to more advanced browsers, safe
in the knowledge that older browsers will degrade gracefully. When a new version of the
browser is launched, if it now supports the CSS you were using as a filter, it should work as
expected. If you are using the more advanced CSS to circumvent a problem in the older
browsers, hopefully this problem will have been solved in the newer version. Because of
this behavior, the use of unsupported CSS as a filtering mechanism is a relatively safe
option. I say relatively because there is always a chance that the browser will support your
new CSS but still exhibit the bug you were trying to fix.

Using filters that rely on parsing bugs is a slightly more dangerous route. This is because
you are relying on a bug, not a feature. Similar to the previous method, if the parsing bug
gets fixed but the bug you are trying to fix hasn’t been addressed, you could end up with
problems. However, more of a concern is that parsing bugs could find their way into newer
versions of browsers. Say, for instance, a new version of Firefox has a particular parsing
bug. If that bug is being used as a filter to supply IE with different width values to account
for its proprietary box model, all of a sudden Firefox would inherit that width, potentially
breaking a lot of sites.

It is also worth bearing in mind that some hacks and filters will invalidate your code. For
instance, using a CSS 3 selector will fail the validator as it currently only validates against
the CSS 2 spec. However, if several browsers support the selector, there is a good chance
it will make it into the final specification. In situations like these, as long as you know that
you are using valid CSS 3, the fact that your CSS fails to validate to CSS 2 probably is not a
big deal. More worrisome are hacks that use illegal characters as they have the potential
for causing all kinds of parsing errors in future, yet-to-be-developed browsers.

As a general rule, it is probably safer to use filters that rely on unsupported CSS, rather
than ones that use some kind of browser bug.

Using hacks sensibly

There is a rather unfortunate overreliance on hacks and filters, especially among those new
to CSS. When something does not work in a particular browser, many CSS developers will
immediately employ a hack, seeing it as some kind of magic bullet. In fact, some develop-
ers seem to measure their expertise by the number of obscure hacks and filters they know.

However, not all CSS problems are the result of browser bugs. As you will see in Chapter 9,
many problems arise from errors in your code or an incomplete understanding of the CSS
specification. Even if a problem is the result of a browser bug, you may not need to resort
to a hack. Unlike the printed page, the way a design is displayed on the Web has as much
to do with the user and their setup as it has with the designer. If your design is off by 3 pix-
els in IE 5.0, as long as it doesn’t seriously affect the rest of your site and the page is usable,
the bug probably isn’t worth fixing. If you do employ a hack to fix a minor display bug in
an older browser, as well as making a lot of extra work for yourself, you could be building
in problems for future browsers. Remember, it is the browser implementation of CSS that
is the culprit here, not your site.

HACKS AND FILTERS

155

8

6145_Ch08 1/11/06 5:53 PM Page 155

In CSS there are many ways to skin a template, so if something is causing a problem, try
achieving the same effect another way. Many CSS errors are caused by overcomplicated
code and markup. If you keep your code simple and clear, most hacks can be avoided.

If you have done your homework and realize that the only option is to employ some form
of hack or filter, you need to do so in a sensible and controlled manner. If your CSS files
are small and simple, and you only need to employ a couple of hacks, it is probably safe to
place these hacks in your main CSS files. However, hacks are usually fairly complicated and
can make your code more difficult to read. If your CSS files are long, or you need to use
more than a couple of hacks, you may be best separating them into their own stylesheets.
As well as making your code easier to read, if a hack starts causing problems in a future
browser, you will know exactly where it is. Similarly, if you decide to drop support for a
particular browser, removing the associated hacks is as simple as removing the CSS file.

To help you choose the correct filter for the job, several sites have published tables
outlining which filters work in which browsers (see Figure 8-1). The best known and
most up-to-date of these support charts can be found at Centricle (http://
centricle.com/ref/css/filters/) and Dithered (www.dithered.com/css_filters/).

Figure 8-1. Filter support chart over at centricle.com

Filtering separate stylesheets
Putting your hacks into browser-specific CSS files and then using filters to send them to the
required browsers can greatly simplify hack management. There are currently two main ways
of achieving this. One way is to use parsing bugs to send particular CSS files to the desired
browsers using the @import rule. The other way is to use IE conditional comments.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

156

6145_Ch08 1/11/06 5:53 PM Page 156

Internet Explorer conditional comments

Conditional comments are a proprietary, and thus nonstandard, Microsoft extension of
regular (X)HTML comments. As the name suggests, conditional comments allow you to
show blocks of code depending on a condition, such as a browser version. Despite being
nonstandard, conditional comments appear to all other browsers as regular comments,
and so are essentially harmless. Conditional comments first appeared in IE 5 on Windows
and are supported by all subsequent versions of the Windows browser.

To deliver a specific stylesheet to all versions of IE 5 and above, you could place the fol-
lowing code in the head of your (X)HTML document:

<!-- [if IE]
<style type="text/css">
@import ("ie.css");
</style>
-->

Versions of IE 5 and above on Windows would receive the stylesheet ie.css while all other
browsers would simply see some commented-out text. With conditional comments you
could target a particular browser such as IE 5.0:

<!-- [if IE 5]
<style type="text/css">
@import ("ie50.css");
</style>
-->

You could also target sets of browsers such as IE 5.5 and greater:

<!-- [if gte IE 5.5000]
<style type="text/css">
@import ("ie55up.css");
</style>
-->

Or IE 5 and IE 5.5:

<!-- [if lt IE 6]
<style type="text/css">
@import ("ie.css");
</style>
-->

This technique works extremely well and is relatively simple to remember. The main down-
side is that these comments need to live in your HTML, not your CSS. If at some stage you
wish to stop supporting a particular browser, you will need to remove the comments from
every page. If this is a concern, you may want to look at Tantek Çelik’s selection of filters,
which we’ll look at next.

HACKS AND FILTERS

157

8

6145_Ch08_3P 3/29/06 5:00 PM Page 157

Band pass filters

Tantek Çelik created a series of filters (http://tantek.com/CSS/Examples/) based on
browser parsing errors that allow you to supply stylesheets to selected browsers using the
@import rule. Because this is a CSS rule, all of these filters can live in a single CSS file,
allowing all your filtered files to be controlled from one place. Separating your hacks into
browser-specific CSS files can greatly simplify your hack management. If you decide to
remove support for a specific browser, such as IE 5.0, you can simply remove the associ-
ated stylesheet, rather than having to trawl through lines of code.

To pass a CSS file to IE 5 and 5.5 on Windows, you can use Tantek’s mid-pass filter:

@media tty {
i{content:"\";/*" "*/}} @import 'ie5x.css'; /*";}
}/* */

This filter looks like a jumble of meaningless rules, and to many browsers that is exactly
what it is. Browsers only capable of understanding CSS 1 will not recognize the @media rule
and completely ignore it. More capable browsers will see a single declaration inside the
@media rule, targeting the <i> element. Due to the existence of an escape character pres-
ent before the second quote mark, the value of the content property is treated as a single
string of meaningless characters. Essentially, modern browsers will see a rule that looks like
this:

@media tty {
i {
content:"Blah, blah blah";

}
}

The tty media type refers to terminals and teletype machines. Fortunately, no devices cur-
rently support this media type, so the whole rule is effectively ignored by compliant
browsers.

However, IE 5.x/Win doesn’t honor the escape character, and closes the content declara-
tion prematurely. The following characters close both the <i> and @media rules, causing
the @import rule to be applied. Any superfluous characters are commented out, and the
whole rule looks like this to IE 5.x/Win:

@media tty {
i{

An escape character is a reserved character—usually a backslash—that causes
the following reserved character to be ignored by the parser. So if you wanted to
auto-generate a quote mark using the CSS content property, you would have to
escape it, or it would prematurely close the open quote:

blockquote:before {content: "\""}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

158

6145_Ch08 1/11/06 5:53 PM Page 158

content:"blah";
/* blah */
}

}
@import 'ie5x.css';
/* blah */

This is all quite complicated, so luckily you don’t need to know how these filters work; you
just need to know how to use them.

In order to target a particular version of IE 5.x/Win, two variations of the mid-pass filter
were created that exploited various bugs in those particular browsers. These were called
the IE 5/Windows band pass filter:

@media tty {
i{content:"\";/*" "*/}}; @import 'ie50win.css'; {;}/*";}
}/* */

and the IE 5.5/Windows band pass filter:

@media tty {
i{content:"\";/*" "*/}}@m; @import 'ie55win.css'; /*";}
}/* */

The other browser you may want to explicitly target is IE 5.2 on the Mac. You can do this
using Tantek’s IE 5/Mac band pass filter, which exploits a different escaping bug, this time
within comments:

/**//*/
@import "ie5mac.css";
/**/

IE 5/Mac incorrectly escapes the second asterisk, causing the @import rule to be applied.
As such, IE 5/Mac sees something like this:

/* blah */
@import "ie5mac.css";
/**/

All other browsers correctly ignore the escaping element, as it is enclosed within a com-
ment, and the @import rule is commented out. Essentially, all other browsers see a rule
that looks like this:

/* blah *//*
blah

*/

As with the other band pass filters, it is not necessary to understand how this filter works
in order to use it. The beauty of these filters is they specifically target bugs in older, out-
of-date browsers. Therefore, you should be able to use these filters safe in the knowledge
that they shouldn’t cause problems in newer browsers.

HACKS AND FILTERS

159

8

6145_Ch08 1/11/06 5:53 PM Page 159

Filtering individual rules and declarations
If your CSS files are small and you only need to employ a few hacks, you can choose to add
the associated filters into your main stylesheets. However, remember that all these rules
and declaration-specific filters do add extra weight and complexity to your code.

The child selector hack

The safest filters rely on unimplemented CSS rather than browser bugs. As these filters use
valid CSS selectors to apply valid declarations, they are not, strictly speaking, filters at all.
They are simply valid CSS rules that certain browsers fail to understand. The first of these
filters is known as the child selector hack. IE 6 and below on Windows does not support
the child selector, so you can use it to hide rules from those browsers. For this filter to
work, you must make sure that there is no whitespace before or after the child selector.

In this example, the child selector hack is being used to hide a transparent background
PNG image from IE 5-6/Win:

html>body {
background-image: url(bg.png);

}

IE 7 is expected to support the child selector. It is also expected to support native PNG
transparency. By using the child selector filter in this way, you are building in forward com-
patibility by allowing newer versions of IE to view the transparent background without
needing to revisit the code.

Attribute selector hack

Another interesting way to filter rules is by using the attribute selector. Many modern
browsers such as Safari and Firefox support the attribute selector, but it is not supported
by IE 6 and below. As such, you can use the attribute selector as a way of styling classes
and IDs for more advanced browsers. In this example, the attribute selector is being used
to apply a background PNG to the content div on more compliant browsers:

div[id="content"] {
background-image: url(bg.png);

}

Again, both the attribute selector and PNG alpha transparency support are scheduled for
IE 7, which means this method should work seamlessly when IE 7 launches.

This method can be used in some very creative ways. For instance, Andy Clarke used
this technique to create two completely different themes for his personal site,
www.allthatmalarkey.co.uk. More advanced browsers get a nice, high-definition
color theme (see Figure 8-2), while less capable browsers get a retro two-tone theme (see
Figure 8-3).

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

160

6145_Ch08 1/11/06 5:53 PM Page 160

Figure 8-2. Using the attribute selector, Andy Clarke’s personal site provides more advanced
browsers with a colorful theme.

Figure 8-3. Older browsers see a retro two-tone theme.

HACKS AND FILTERS

161

8

6145_Ch08 1/11/06 5:53 PM Page 161

The star HTML hack

One of the best-known and possibly most useful CSS filters is known as the star HTML
hack. This filter is incredibly easy to remember and targets IE 6 and below. As you are
aware, the HTML element is supposed to be the first, or root, element on a web page.
However, all current versions of IE have an anonymous root element wrapping around the
HTML element. By using the universal selector, you can target an HTML element enclosed
inside another element. Because this only happens in IE 6 and below, you can apply spe-
cific rules to these browsers:

* html {
font-size: small;

}

Adding a universal selector followed by an html type selector to the start of any regular
CSS rule will hide that rule from everything other than IE. The most common way to use
this filter is to set a rule that you want all browsers other than IE to apply, and then over-
ride that rule in IE using the star HTML hack. For example, IE renders 1-pixel dotted lines
as ugly dashed lines by mistake. To avoid these ugly dashed lines, you could set the hover
border style on your anchors to dotted but override this in IE, making them solid instead:

a:hover {
border: 1px dotted black;

}

* html a:hover {
border-style: solid;

}

It is very unlikely that this bug will appear other browsers, and it is expected to be fixed
in IE 7. Therefore, the star HTML hack provides a relatively safe way of targeting IE 6
and below.

IE/Mac commented backslash hack

Another useful filter is known as the commented backslash hack. IE 5 on the Mac incor-
rectly allows escaping inside comments, so this filter works by adding a backslash in front
of the closing comment identifier. All other browsers will ignore this escape and apply the
following rules. However, IE 5/Mac will think that the comment is still open, ignoring
everything until the next close comment string.

/* Hiding from IE5/Mac */
#nav a {
width: 5em;

}
/* End Hack */

This bug forms the basis of the IE 5/Mac band pass filter you saw earlier.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

162

6145_Ch08 1/11/06 5:53 PM Page 162

If you combine the star HTML and commented backslash filters, you get the Holly hack,
named after its inventor, Holly Bergevin. By combining these two rules, it is possible to
apply rules to IE 6 and below on Windows:

/* Hiding from IE5/Mac */
* html {
height: 1px;

}
/* End Hack */

This can be very useful for attacking and fixing all kinds of Windows-specific IE bugs, and
is possibly one of the most used filters around.

The escaped property hack

IE 5.x on Windows ignores escape characters. This bug forms the basis of the mid-pass fil-
ter you learned about earlier. It also forms the basis of the much easier escaped property
filter. As the name suggests, this filter works by adding an escape character within a prop-
erty. All modern browsers should ignore this escape character, but IE 5.x/Win thinks this is
part of the property name and, not recognizing the property, ignores the declaration.

#content {
w\idth: 100px

}

As such, the escaped property filter provides a simple way of hiding styles from IE 5.x/Win.
However, you need to be careful when using this filter as the backslash character cannot
come before the numbers 0 to 9 or the letters a to f (or A to F). This is because these val-
ues are used in hex notation and may therefore get escaped.

Tantek’s box model hack

Tantek’s box model hack was one of the first CSS filters ever invented. Tantek Çelik created
this filter at the behest of Jeffrey Zeldman to allow him to work around IE’s proprietary
box model (see Chapter 9). This filter works by passing one width to IE 5 on Windows and
another width to all other browsers. It does this using the same escape character bug used
in the band pass filters:

div.content {
width:400px;
voice-family: "\"}\"";
voice-family:inherit;
width:300px;

}

“Big John” and Holly Bergevin run www.positioniseverything.net, the defini-
tive resource on browser bugs and workarounds. Together they discovered or
documented many of the hacks and bugs seen in this and the following chapter.

HACKS AND FILTERS

163

8

6145_Ch08 1/11/06 5:53 PM Page 163

Unfortunately, Opera 5 has the same parsing bug as IE 5.x/Win. As such, a second rule is
required to give Opera the correct width:

html>body .content {
width:300px;

}

If it weren’t for this filter, pure CSS layout may never have been possible. However, these
days it is seen as an ugly and complicated filter, best avoided. I have included it in here
purely for its historical significance and because you will still see it being used in older
stylesheets. These days, it is much more common to use the modified simplified box
model hack.

The modified simplified box model hack

The escaped property hack can be combined with the star HTML hack to create the mod-
ified simplified box model hack, or MSBMH for short. This hack is used for working around
IE’s proprietary box model by providing one length value to IE 5.x/Win and then the cor-
rect length value to IE 6/Win and all other browsers:

* html #content {
width: 80px;
w\idth: 100px;

}

html #content {
width: 100px;
padding: 10px;

}

The modified simplified box model hack is easier to remember and much cleaner than
Tantek’s box model hack, and so is currently the preferred box model hack. This filter can
be used for more than just box model hacks, so don’t let the name limit you.

The !important and underscore hacks

There may be some instances where you wish to apply one declaration to IE 6 and below on
Windows and another to all other browsers, within the same rule. To do this, you could use
the commented property hack, or you could use the !important or the underscore hack.

For more on the history of this, and several other filters, see Tantek Çelik’s excel-
lent article, “Pandora's Box (Model) of CSS Hacks and Other Good Intentions,”
at http://tantek.com/log/2005/11.html.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

164

6145_Ch08 1/11/06 5:53 PM Page 164

The !important hack works because IE 6 and below on Windows has problems dealing
with multiple properties in a single rule:

#nav {
position: fixed !important;
position: static;

}

IE 4-6/Win will ignore the first declaration and apply the second. All other browsers will
apply the first declaration because it is using the !important keyword, which increases the
rule’s priority within the cascade (see Chapter 1).

Similar to the !important hack is the underscore hack. By placing an underscore in front
of a property, compliant browsers will no longer recognize that property and the declara-
tion will be ignored. However, IE 6 and below on Windows ignores the underscore and
thus applies the rule. So in this example, all modern browsers will apply a position of
fixed, skipping the unknown second rule. IE 4-6/Win will ignore the underscore and will
override the first rule, setting the position to static.

#nav {
position: fixed;
_position: static;

}

The Owen hack

All of the filters so far have been aimed at various versions of IE. This is partly because IE
has more bugs than most current browsers. However, it is also because IE is by far the most
prevalent browser, so more bugs get found and documented. But there are other buggy
browsers out there, including Opera 6 and below.

The Owen hack allows authors to hide styles from Opera 6 and below, as well as from IE 6
and below on Windows. This filter works because these browsers do not implement the
first-child selector. Because there can only ever be one head element, it is always a first-
child. The body tag always comes after the head tag, and so can be targeted using an adja-
cent sibling selector. The resulting selector is understood by more compliant browsers,
while being ignored by version 6 and below of Opera and IE on Windows.

In the following example, the Owen hack is being used to add a background PNG image on
the body tag for more compliant browsers, hiding it from IE/Win and Opera, versions 6
and below:

head:first-child+body {
background-image: url("bg.png");

}

HACKS AND FILTERS

165

8

6145_Ch08_3P 4/3/06 4:25 PM Page 165

If you only want to target Opera 6 and below, you need to combine the Owen hack with
the child selector hack. Say you wanted to display an upgrade notice to Opera 6 users. You
would first use the child selector hack to show your upgrade message to every browser
except IE 6 and below on Windows. You could then use the Owen hack to hide the mes-
sage from more modern browsers:

html>body #getFirefox {
display: static;

}

head:first-child+body #getFirefox {
display: none;

}

Summary
In this chapter you have learned that hacks and filters can be an important weapon in any
CSS developer’s arsenal. However, hacks need to be used sparingly, and preferably as a last
resort. If you do need to use hacks or filters, do so with forward compatibility and ease of
maintenance in mind.

In the next chapter, you will learn about different ways to attack and fix CSS bugs. You will
be introduced to some of the most common and perplexing browsers bugs around, and
you will learn how to fix them using your newfound arsenal of techniques.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

166

6145_Ch08 1/11/06 5:53 PM Page 166

9 BUGS AND BUG FIXING

top: 0;
left: 0;

bottom: 0;
left: 0;

Absolut
e

Text flows around floats

6145_Ch09 1/11/06 6:05 PM Page 167

Compared to many programming languages, CSS is a relatively simple language to learn.
The syntax is straightforward, and due to its presentational nature, there is no complicated
logic to grapple with. The difficulties start when it comes time to test your code on differ-
ent browsers. Browser bugs and inconsistent rendering are a major stumbling block for
most CSS developers. Your designs look fine on one browser, but your layout inexplicably
breaks on another.

The misconception that CSS is difficult comes not from the language itself, but the hoops
you need to jump through to get your sites working in all the major browsers. Bugs are dif-
ficult to find information on, poorly documented, and often misunderstood. Hacks are
seen by many as magic bullets—arcane sigils with exotic names that, when applied to your
code, will magically fix your broken layouts. Hacks are definitely potent tools in your
armory, but they need to be applied with care and generally as a last resort. A much more
important skill is the ability to track, isolate, and identify bugs. Only once you know what
a bug is can you look for ways to squash it.

In this chapter you will learn about

How to track down CSS bugs

The mysterious hasLayout property

The most common browser bugs and their fixes

Bug hunting
We all know that browsers are buggy, some of them more than others. When a CSS devel-
oper comes across a problem with their code, there is the immediate temptation to mark
it as a browser bug and apply the appropriate hack. However, browser bugs aren’t as com-
mon as everybody likes to think. The most common CSS problems arise not from the
browser bugs, but from an incomplete understanding of the CSS specification.

Many developers are self-taught, and build up a mental model of how they believe things
should behave. When something doesn’t work the way they expect, the natural temptation
is to blame the browsers and reach for a hack. To avoid these problems, it is always best to
approach a CSS bug assuming that you have done something wrong. Only once you are
sure that there are no errors on your part should you consider the problem to be the
result of a browser bug.

Common CSS problems

Some of the simplest CSS problems are caused by typos and syntactical errors in your
code. One of the best ways to prevent these types of bugs is to run your code through the
CSS validator (http://jigsaw.w3.org/css-validator/). This should pick up any gram-
matical errors, showing you the lines the errors are on and a brief description of each
error (see Figure 9-1).

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

168

6145_Ch09 1/11/06 6:05 PM Page 168

Figure 9-1. Result from the W3C CSS validator

When validating your (X)HTML and CSS, you may be greeted with a page full of errors. This
can be quite intimidating at first, but don’t worry. Most of these errors will be the result of
one or two actual errors. If you fix the first error mentioned and revalidate, you will see
that many of the original errors will have disappeared. Do this a couple of times and your
code should quickly become error free.

Remember that the validator is only an automated tool and is not infallible. There are a
growing number of reported bugs with the validator, so if you think something is right but
the validator is saying something different, always check against the latest CSS specifica-
tion. I always check my code against CSS 2.1 as this is the version of CSS that best matches
current browser implementation.

Problems with specificity and sort order
As well as syntactic errors, one of the more common problems revolves around specificity
and sort order. Specificity problems usually manifest themselves when you apply a rule to
an element, only to find it not having any effect. You can apply other rules and they work
fine, but certain rules just don’t seem to work. In these situations the problem is usually
that you have already defined rules for this element elsewhere in your document using a
more specific selector.

In this example, a CSS developer has set the background color of all the paragraphs in the
content area to be transparent. However, they want the intro paragraph to be orange and
so have applied that rule directly to the intro paragraph:

#content p {
background-color: transparent;

}

.intro {
background-color: #FEECA9;
}

BUGS AND BUG FIXING

169

9

6145_Ch09 1/11/06 6:05 PM Page 169

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

170

If you test this code in a browser, you will see that the intro paragraph is still transparent.
This is because the selector targeting all the paragraphs in the content area is more spe-
cific than the selector targeting the intro paragraph. To achieve the desired result, you
need to make the selector targeting the intro paragraph more specific. In this case, the
best way to achieve this is to add the id for the content element to the start of the intro
paragraph selector:

#content p {
background-color: transparent;

}

#content .intro {
background-color: #FEECA9;
}

Problems with margin collapsing
Margin collapsing (see Chapter 2) is another CSS feature that, if misunderstood, can cause
a lot of gray hairs. Take the simple example of a paragraph nested inside a div element:

<div id="box">
<p>This paragraph has a 20px margin.</p>

</div>

The box div is given a 10-pixel margin and the paragraph is given a 20-pixel margin:

#box {
margin: 10px;
background-color:#d5d5d5;

}

p {
margin: 20px;
background-color:#6699FF;

}

You would naturally expect the resulting style to look like Figure 9-2, with a 20-pixel margin
between the paragraph and the div, and a 10-pixel margin around the outside of the div.

Figure 9-2. How you would expect the preceding style to look

6145_Ch09 1/11/06 6:05 PM Page 170

However, the resulting style actually looks like Figure 9-3.

Figure 9-3. How the style actually looks

Two things are going on here. First, the paragraph’s 20-pixel top and bottom margins col-
lapse with the 10-pixel margin on the div, forming a single 20-pixel vertical margin.
Second, rather than being enclosed by the div, the margins appear to protrude from the
top and bottom of the div. This happens because of the way elements with block-level
children have their height calculated.

If an element has no vertical border or padding, its height is calculated as the distance
between the top and bottom border edges of its contained children. Because of this, the
top and bottom margins of the contained children appear to protrude from the contain-
ing element. However, there is a simple fix. By adding a vertical border or padding, the
margins no longer collapse and the height of the element is calculated as the distance
between the top and bottom margin edges of its contained children instead.

To get the preceding example looking like Figure 9-2, you simply need to add padding or
a border around the div:

#box {
margin: 10px;
padding: 1px;
background-color:#d5d5d5;

}

p {
margin: 20px;
background-color:#6699FF;

}

Most problems with margin collapsing can be fixed with the addition of a transparent bor-
der or 1 pixel of padding.

Bug hunting basics
The first step in tracking down a bug is to validate your (X)HTML and CSS to check for typos
or syntactic errors. Some display errors are caused by browsers rendering pages in quirks
mode. As such, it is a good idea to check that you are using the correct DOCTYPE for your
markup language in order for your pages to render in standards mode (see Chapter 1). You
can tell the mode your page is rendering in by installing the Firefox developer’s toolbar
(http://tinyurl.com/cmh38). If your page is rendering in quirks mode, the checkmark at

BUGS AND BUG FIXING

171

9

6145_Ch09 1/11/06 6:05 PM Page 171

the top right of the toolbar will be gray. If your page is rendering in standards mode, the
checkmark will turn blue. Clicking on this checkmark will provide more information about
the page, as well as explicitly define the rendering mode (see Figure 9-4).

Figure 9-4. The Firefox web developer’s toolbar shows your page is displaying in
standards or quirks mode.

Many developers will develop their pages primarily using Internet Explorer, so each time
they make a change, they will preview the page in IE to see if it is working correctly. Once
the pages are almost ready, they will then test in a variety of browsers and try to fix any
“bugs” that appear. However, this is a dangerous approach that can cause many long-term
problems.

IE 5.x/Win is a notoriously buggy browser with several important CSS flaws, including the
way it handles floats and its incorrect implementation of the box model. IE 6 is slightly less
buggy, but still has numerous bugs and inconsistencies. By using IE as their primary devel-
opment browser, many developers mistakenly interpret IE’s behavior as the correct behav-
ior, and wonder why more modern browsers “break” their carefully crafted CSS layouts. In
reality the pages are actually “broken” in IE and are displaying correctly in the more mod-
ern browsers.

A much safer approach is to use more standards-compliant browsers such as Firefox or
Safari as your primary development browser. If your layout works in one of these
browsers, in all likelihood you are doing things in the correct way. You can then test your
pages on less capable browsers and find workarounds for any display problems you find.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

172

6145_Ch09 1/11/06 6:05 PM Page 172

Isolate the problem

Next, you need to try to isolate the problem. By isolating the problem and identifying the
symptoms, you can hopefully figure out what is causing the problem and fix it. One way to
do this is by applying borders or outlines to the relevant elements to see how they interact:

#promo1 {
float: left;
margin-right: 5px;
border: 1px solid red;

}

#promo2 {
float: left;
border: 1px solid green;

}

I tend to add borders directly to my code. You could use the outline option in the devel-
oper’s toolbar plug-in for Firefox, or one of many bookmarklets for outlining different
elements. Sometimes just the act of adding borders will fix the problem, usually indicating
a margin collapsing issue.

Try changing a few properties to see if they affect the bug, and if so, in what way. It may
be useful to attempt to exaggerate a bug. For instance, if the gap between these two boxes
is bigger than you expected in IE, try upping the margin to see what happens. If the space
between the boxes in IE has doubled, you have probably fallen foul of IE’s double-margin
float bug.

#promo1 {
float: left;
margin-right: 40px;
border: 1px solid red;

}

#promo2 {
float: left;
border: 1px solid green;

}

Try some common fixes. For instance, many IE bugs are fixed by setting the position
property to relative, by setting the display property to inline (on floated elements), or
by setting a dimension such as width or height. You will learn more about these common
fixes and why they work later in the chapter.

Many CSS problems can be found and fixed quickly, with a minimum of effort. If the prob-
lem starts to drag on, you should consider creating a minimal test case.

BUGS AND BUG FIXING

173

9

6145_Ch09 1/11/06 6:05 PM Page 173

Creating a minimal test case

A minimal test case is simply the smallest amount of (X)HTML and CSS required to repli-
cate the bug. By creating a minimal test case, you help cut out some of the variables and
make the problem as simple as possible.

To create a minimal test case, you should first duplicate the problem files. Start by remov-
ing extraneous (X)HTML until you are left with just the basics. Then start commenting out
stylesheets to work out which stylesheets are causing the problem. Go into those
stylesheets and start deleting or commenting out blocks of code. If the bug suddenly
stops, you know that the last block of code you commented out is contributing to the
problem. Keep going until you are left only with the code that is causing the problems.

From here you can start investigating the bug in more detail. Delete or comment out dec-
larations and see what happens. How does that change the bug? Change property values
and see if the problem goes away. Add common fixes to see if they have any effect. Edit
the (X)HTML to see if that has any effect. Use different combinations of (X)HTML ele-
ments. Some browsers have strange whitespace bugs, so try removing whitespace from
your (X)HTML.

Fix the problem, not the symptoms

Once you know the root of the problem, you are in a much better position to implement
the correct solution. Because there are many ways to skin a CSS site, the easiest solution is
simply to avoid the problem in the first place. If margins are causing you problems, think
about using padding instead. If one combination of (X)HTML elements is causing prob-
lems, try changing the combination.

Many CSS bugs have very descriptive names. This makes searching for answers on the Web
fairly easy. So if you have noticed that IE is doubling the margins on all floated elements,
do a search for “Internet Explorer Double Margin Float Bug” and you are bound to find a
solution.

If you find that you cannot avoid the bug, then you may have to simply treat the symp-
toms. This usually revolves around finding a filter that affects the problem browser and
parsing a separate rule to that browser.

Ask for help

If you have created a minimal test case, tried common solutions, searched for possible
fixes, and still cannot find a solution, then ask for help. You’ll find lots of active CSS com-
munities out there, such as CSS-Discuss (www.css-discuss.org/), the Web Standards
Group (http://webstandardsgroup.org/), and the Webmaster World CSS forums
(http://tinyurl.com/duh2n). These communities are full of people who have been devel-
oping CSS sites for many years, so there is a good chance somebody will have experienced
your bug before and know how to fix it. If you have a new or particularly intriguing bug,
people may be willing to pitch in with suggestions and even help you work out a fix.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

174

6145_Ch09 1/11/06 6:05 PM Page 174

The thing to remember when asking for help is that most web developers are extremely
busy people. If you haven’t validated your code or have simply posted a link to your full
site expecting them to trawl through hundreds of line of code, don’t expect a flood of
help. The best way to ask for help on a mailing list or forum is to use a title that accurately
describes the problem, write a succinct summary of the problem, and then either paste in
your minimal test case or, if it is more than a few lines of code, link to the test case on your
site.

Having “layout”
We all know that browsers can be buggy, and IE on Windows seems buggier than most.
One of the reasons IE/Win behaves differently from other browsers is because the render-
ing engine uses an internal concept called “layout.” Because layout is a concept particular
to the internal working of the rendering engine, it is not something you would normally
need to know about. However, layout problems are the root of many IE/Win rendering
bugs, so it is useful to understand the concept and how it affects your CSS.

What is “layout”?

Internet Explorer on Windows uses the layout concept to control the size and positioning
of elements. Elements that are said to “have layout” are responsible for sizing and posi-
tioning themselves and their children. If an element does not “have layout,” its size and
position are controlled by the nearest ancestor with layout.

The layout concept is a hack used by IE’s rendering engine to reduce its processing over-
head. Ideally all elements would be in control of their own size and positioning. However,
this causes huge performance problems in IE. As such, the IE/Win development team
decided that by applying layout only to those elements that actually needed it, they could
reduce the performance overhead substantially.

Elements that have layout by default include

body

html in standards mode

table

tr, td

img

hr

input, select, textarea, button

iframe, embed, object, applet

marquee

BUGS AND BUG FIXING

175

9

6145_Ch09 1/11/06 6:05 PM Page 175

The concept of layout is specific to IE on Windows, and is not a CSS property. Layout can-
not be explicitly set in the CSS, although setting certain CSS properties will give an element
layout. It is possible to see if an element has layout by using the JavaScript function,
hasLayout. This will return true if the element has layout and false if it doesn’t. hasLayout
is a read-only property and so cannot be set using JavaScript.

Setting the following CSS properties will automatically give that element layout:

position: absolute

float: left or right

display: inline-block

width: any value

height: any value

zoom: any value (Microsoft property—doesn’t validate)

writing-mode: tb-rl (Microsoft property—doesn’t validate)

What effect does layout have?

Layout is the cause of many IE/Win rendering bugs. For instance, if you have a paragraph
of text next to a floated element, the text is supposed to flow around the element.
However, in IE 6 and below on Windows, if the paragraph has layout—by setting the
height, for example—it is constrained to a rectangular shape, stopping the text from flow-
ing around the float (see Figure 9-5).

Figure 9-5. Text is supposed to flow around adjacent floated elements. However, on IE/Win, if
the text element has layout, this doesn’t happen.

This can cause all kinds of problems with floated layouts. Worse still, many people who use
IE as their main browser mistakenly assume this is the correct behavior and get confused
when other browsers treat floats differently.

Text flows around floats But not in Internet Explorer

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

176

6145_Ch09 1/11/06 6:05 PM Page 176

Another problem revolves around how elements with layout size themselves. If the content
of an element becomes larger than the element itself, the content is supposed to flow out of
the element. However, in IE 6 and below on Windows, elements with layout incorrectly grow
to fit the size of their contents (see Figure 9-6).

Figure 9-6. Elements with layout incorrectly grow to fit their contents.

This means that width in IE/Win actually acts more like a min-width. This behavior is also
the cause of many broken floated layouts in IE/Win. When the content of a floated box
incorrectly forces the width of the box to grow, the box becomes too big for the available
space and drops below the other floated elements.

Other problems include

Elements with layout not shrinking to fit

Floats being auto-cleared by layout elements

Relatively positioned elements not gaining layout

Margins not collapsing between elements with layout

The hit area of block-level links without layout only covering the text

In the next section, we are going to cover some of the most common browser bugs, and
you will notice that many of the fixes for IE on Windows involve setting properties that
force the element to have layout. In fact, if you come across an IE/Win bug, one of the first
things you can do is try applying rules that force layout to see if that fixes the problem.

If you would like to learn more about IE’s internal hasLayout property, I recommend read-
ing “On Having Layout” at http://tinyurl.com/acg78.

Common bugs and their fixes
One of the greatest skills any CSS developer can have is the ability to spot common
browsers bugs. By knowing the various elements that conspire to cause these bugs, you
can spot and fix them before they ever become a problem.

Content flows out of the box But not in Internet Explorer

Pellentesque
at leo nec

Pellentesque
at leo nec

width:100px Box incorrectly expands

BUGS AND BUG FIXING

177

9

6145_Ch09 1/11/06 6:05 PM Page 177

Double-margin float bug

One of the most common and easy-to-spot bugs is the double-margin float bug in IE 6 and
below. As the name suggests, this Windows bug doubles the margins on any floated
elements (see Figure 9-7).

Figure 9-7. Demonstration of IE/Win’s double-margin float bug

This bug is easily fixed by setting the display property of the element to inline. As the ele-
ment is floated, setting the display property to inline won’t actually affect the display
characteristics. However, it does seem to stop IE 6 and below on Windows from doubling all
of the margins. This is such a simple bug to spot and fix: every time you float an element with
horizontal margins, you should automatically set the display property to inline.

Three-pixel text jog bug

Another very common IE 5-6/Win bug is the 3-pixel text jog bug. This bug manifests itself
when you have text adjacent to a floated element. For instance, say you had an element
floated left and you don’t want the text in the adjacent paragraph to wrap around the float.
You would do this by applying a left margin to the paragraph, the same width as the image:

.myFloat {
float: left;
width: 200px;

}

p {
margin-left: 200px;

}

float: left;
display: inline;
margin-left: 20px;

re
Content Area

20pxfloat: left;
margin-left: 20px;

Content Area

40px

IE on Windows doubles the margins
on floated elements.

Setting display:inline fixes the bug.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

178

6145_Ch09 1/11/06 6:05 PM Page 178

When you do this, a mysterious 3-pixel gap appears between the text and the floated ele-
ment. As soon as the floated element stops, the 3-pixel gap disappears (see Figure 9-8).

Figure 9-8. Demonstration of the IE 5-6/Win’s 3-pixel text jog bug

Fixing this bug requires a two-pronged attack. First, the element containing the text is
given an arbitrary height. This forces the element to have layout, which seemingly removes
the text jog. Because IE 6 and below on Windows treats height like min-height, setting a
tiny height has no effect on the actual dimensions of the element in that browser.
However, it will affect other browsers, so the Holly hack is used to hide this rule from
everything other than IE 6 and below on Windows:

/* Hide from IE5-Mac. Only IE-Win sees this. */

* html p {
height: 1%;

}
/* End hide from IE5/Mac */

Unfotunately, doing this causes another problem. As you learned earlier, elements with
layout are constrained to a rectangular shape and appear next to floated elements rather
than underneath them. The addition of 200 pixels of padding actually creates a 200-pixel
gap between the floated element and the paragraph in IE 5-6/Win. To avoid this gap, you
need to reset the margin on IE 5-6/Win back to zero:

/* Hide from IE5-Mac. Only IE-Win sees this. */

* html p {
height: 1%;
margin-left: 0;

}
/* End hide from IE5/Mac */

float: left;

Lorem ipsum dolor sit

amet, consectetuer

adipiscing elit. Sed sit ametMysterious 3px gap
adjacent to float

Line box

BUGS AND BUG FIXING

179

9

6145_Ch09 1/11/06 6:05 PM Page 179

The text jog is fixed, but another 3-pixel gap has now appeared, this time on the floated
image. To remove this gap, you need to set a negative 3-pixel right margin on the float:

/* Hide from IE5-Mac. Only IE-Win sees this. */

* html p {
height: 1%;
margin-left: 0;

}

* html .myFloat {
margin-right: -3px;

}
/* End hide from IE5/Mac */

This will fix the problem if the floated element is anything other than an image. However, if
the floated element is an image, there is one last problem to solve. IE 5.x/Win adds a 3-pixel
gap to both the left and the right of the image, whereas IE 6 leaves the image’s margins
untouched. As such, another hack is required to remove the 3-pixel gap from IE 5.x/Win only:

/* Hide from IE5-Mac. Only IE-Win sees this. */

* html p {
height: 1%;
margin-left: 0;

}

* html img.myFloat {
margin: 0 -3px;
ma\rgin: 0;

}
/* End hide from IE5/Mac */

This solves the problem, but in a really nasty and complicated way. As such, if possible you
would be better off splitting these rules up into separate, browser-specific stylesheets. If
you did this, you could have one stylesheet for IE 5.x on Windows:

p {
height: 1%;
margin-left: 0;

}

img.myFloat {
margin: 0 -3px;

}

And another for IE 6:

p {
height: 1%;

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

180

6145_Ch09 1/11/06 6:05 PM Page 180

margin-left: 0;
}

img.myFloat {
margin: 0;

}

IE 6 duplicate character bug

Another curious bug involving floats is IE 6’s duplicate character bug. Under certain condi-
tions, the last few characters in the last of a series of floats will be duplicated beneath the
float, as shown in Figure 9-9.

Figure 9-9. Demonstration of IE 6’s duplicate character bug

This bug manifests itself when you have multiple comments in between the first and last of
a series of floated elements. The first two comments have no effect, but each subsequent
comment causes two characters to be duplicated. So three comments would result in two
duplicate characters, four comments would result in four duplicate characters, and five
comments would result in six duplicate characters.

<div id="content">
<!-- mainContent -->
<div id="mainContent">
…
</div><!-- end mainContent -->
<!-- secondaryContent -->
<div id="secondaryContent">
…
</div>

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Donec rutrum faucibus nulla.
Cras eget leo et dui sollicitudin mattis.
Vestibulum ante lectus, malesuada in,
condimentum eu, elementum sed, metus.
Pellentesque justo. Aenean sed risus. Fusce
eget turpis id mauris elementum rutrum. Ut
tristique. In ut justo in enim laoreet

Vestibulum sit
amet velit.
Pellentesque
adipiscing lectus
eget tortor.
Curabitur sed
felis iaculis dol or

Last characters
duplicated

or

BUGS AND BUG FIXING

181

9

6145_Ch09 1/11/06 6:05 PM Page 181

Strangely, this bug seems related to the 3-pixel text jog bug you saw previously. To fix the
bug you can remove 3 pixels from the final float by setting a negative right margin, or
make the container 3 pixels wider. However, both these methods are likely to cause prob-
lems in IE 7, which isn’t expected to exhibit this bug. Because of this, the easiest and safest
way to avoid this bug is to remove the comments from your HTML code.

IE 6 peek-a-boo bug

Another strange and infuriating bug is IE 6’s peek-a-boo bug, so called because under cer-
tain conditions text will seem to disappear, only to reappear when the page is reloaded.
This happens when there is a floated element followed by some nonfloated elements and
then a clearing element, all contained within a parent element that has a background
color or image set. If the clearing element touches the floated element, the nonfloated
elements in-between seem to disappear behind the parent element’s background color or
image, only to reappear when the page is refreshed (see Figure 9-10).

Figure 9-10. Demonstration of IE 6’s peek-a-boo bug

Luckily, there are a number of ways you can combat this bug. The easiest way is probably
to remove the background color or image on the parent element. However, this is often
not practical. Another way is to stop the clearing element from touching the floated ele-
ment. The bug doesn’t seem to manifest itself if the container element has specific dimen-
sions applied. The bug also doesn’t manifest itself if the container is given a line height.
Lastly, setting the position property of the float and the container to relative also seems
to alleviate the problem.

Absolute positioning in a relative container

The last major browser bug I am going to cover involves absolutely positioned elements
within a relatively positioned container. You learned in earlier chapters how useful nesting
an absolutely positioned element in a relative container can be. However, IE 6 and below
has a number of bugs when you use this technique.

cleared element

floated
element

cleared element

floated
element

Content next to a floated element
and followed by a cleared element

The content disappears in IE6, but
reappears if the page is refreshed

#container #container

Background color/image set
no width or height set

Background color/image set
no width or height set

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

182

6145_Ch09 1/11/06 6:05 PM Page 182

These bugs arise from the fact that relatively positioned elements don’t gain IE/Win’s inter-
nal hasLayout property. As such, they don’t create a new positioning context and all of the
positioned elements get positioned relative to the viewport instead (see Figure 9-11).

Figure 9-11. Demonstration showing how IE 5.x incorrectly positions absolutely positioned elements
within a relative container

To get IE 6 and below on Windows to behave correctly, you need to force the relatively
positioned container to have layout. One way to do this is to explicitly set a width and
height on the container. However, you will often want to use this technique when you
don’t know the width and height of the container, or when you want one or both of these
properties to be flexible.

Instead, you can use the Holly hack to supply an arbitrary height to the container. This will
give the container layout, but because elements in IE 6 and below incorrectly expand to fit
their contents, the actual height won’t be affected.

/* Hides from IE-Mac */
* html .container {
height: 1%;

}
/* End hide from IE-Mac */

Stop picking on Internet Explorer

Internet Explorer isn’t the only buggy browser around, so you may wonder why I have
been focusing my attentions on IE bugs. Don’t worry, it’s not another case of Microsoft
bashing; there are good reasons for this focus.

Relatively positioned ancestor

Viewport

top: 0;
left: 0;

top: 0;
right: 0;

bottom: 0;
left: 0;

bottom: 0;
right: 0;

top: 0;
right: 0;

bottom: 0;
right: 0;

bottom: 0;
left: 0;

IE 5.x incorrectly positions
boxes relative to the viewport

Absolutely positioned
elements

BUGS AND BUG FIXING

183

9

6145_Ch09 1/11/06 6:05 PM Page 183

First, IE has by far the biggest browser market share. With so many copies in circulation, IE
bugs tend to get found and documented pretty quickly. When a major CSS bug gets dis-
covered in IE, scores of developers will be on the case trying to find a fix or a workaround.
Because of this popularity, there are more well-documented bugs and fixes for IE than any
other browser.

The other major issue is the pace of development. Browsers such as Firefox, Safari, and
Opera are constantly being updated, with new builds appearing with remarkable fre-
quency. Almost as soon as a bug is discovered, it is fixed and a new version of the browser
released. Because of this, any Firefox or Safari bug I talk about now will probably have
been fixed by the next revision.

This pace of development is excellent, but it does have its own problems. Rather than hav-
ing two or three versions of a browser to deal with, you may have 20 or 30. You can never
be sure if your users have the latest version, and this makes testing extremely difficult. IE,
on the other hand, didn’t see a major revision for about 5 years. As such, there has been
much more time for bugs to surface and much more impetus to find a fix.

Luckily, IE 7 promises to be a much more compliant browser. Many of the better known IE
bugs have been addressed, along with increased support for advanced CSS 2.1 selectors
such as the child and attribute selectors. As with all browsers, new bugs will surface, and
IE 7 will be far from perfect. However, the faster people can be convinced to upgrade to
modern browsers such as IE 7 and Firefox, the quicker older browsers such as IE 5.0 can be
retired.

In the interim, it is worth exploring Dean Edwards’ excellent IE 7 patch. This series of
JavaScript files aims to bring IE 5-6/Win up to speed with IE 7. This includes improved
selector implementation and numerous bug fixes. For more information about this patch,
visit http://dean.edwards.name/IE7/.

Summary
In this chapter, you have learned some important techniques for tracking down and
squashing CSS bugs. You have learned about IE on Windows internal hasLayout property
and how this is the root of many IE/Win browser bugs. Finally, you have learned about
some of the most common browser bugs and how to fix them.

Next you will see how all of this information can be put together, through two stunning
case studies created by two of the best CSS designers and developers of our time.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

184

6145_Ch09_3P.qxd 4/3/06 4:29 PM Page 184

CASE STUDY 1

MORE THAN DOODLES

by Simon Collison

6145_Ch10_CS1 1/11/06 6:07 PM Page 185

Throughout this book, Andy has detailed some Holy Grail CSS methods, be they difficult to
implement, or merely misunderstood or misused. It is clear that as designers we have a
very rich palette from which to paint, but it is also clear that in some cases the obvious
approach is not necessarily the best approach. It is with this in mind that Cameron and I
have sought to pull a number of these methods into two fresh experimental designs, to
explore the pluses and minuses for each approach, and to illustrate their use in two func-
tional, accessible, standards-compliant websites.

Most of us want our jobs to be easier. We want complete control over our layouts, and
maximum impact from minimal markup. It is absolutely true that this power comes with
patience and practice, but by adding a few pivotal hooks to your XHTML, you leave your-
self free to work solely with your CSS to transform all those XHTML elements into jaw-
dropping eye candy.

In this case study you will learn about

Controlling the content area with descendant selectors

Floating the columns

Highlighting the current page based on the body class

Creating drop-in boxes for columns

Using transparent custom corners and borders

Combining classes for targeted actions

Using image classes and exceptions

Dealing with links

Creating floated drop shadows

About this case study
This case study will show you how to take a chunk of simple semantic markup and apply a
neat and tidy CSS technique to it as efficiently and effectively as possible. Your markup
will, for the most part, not be littered with div hooks and limiting extraneous bloat, for as
Andy has already pointed out throughout this book, CSS is smarter than all that. These
examples will rely on juicy stuff such as descendant selectors, attribute selectors, inheri-
tance, and so on to do all the hard work, leaving the XHTML lean, mean, and spotlessly
clean—for the most part.

You will be given the keys to More Than Doodles (Figure 1), an entirely fictitious produc-
tion featuring nonfictitious illustrators on its pages. The idea of a news site focused on
illustration and digital art seems appropriate, for no adventurous designer would seek to
produce such a site without the liberal use of images, complementary design features, and
a little pizzazz. Thus, the site becomes a challenge where it is tempting to overload the
page and suffer horrendously swollen markup as a result. The need is for many images and
maximum control, but minimal bandwidth-busting bloat. It’s time to liberate some of the
techniques Andy has been discussing and put them into practice.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

186

6145_Ch10_CS1 1/11/06 6:07 PM Page 186

Figure 1. More Than Doodles homepage

The design stops short of being truly adventurous, in the interests of keeping the case
study on track and easy to understand. Armed with the techniques in this book, however,
you should soon see how simple it would be to take the design to the next level, and I
hope you will want to experiment with the design to these ends.

MORE THAN DOODLES

187

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 187

Controlling content area
with descendant selectors

Let’s start by defining “content area” as the area of the page coming under the horizontal
main navigation in the header, and the footer at the base of the page (Figure 2). In other
words, it’s the area where the page-specific action happens. Your content area can be
arranged in three ways: one-column (full width of the content area), two-column (thin
sidebar and wider main column to the right), and finally three-column (thin sidebar, with
two equal-width columns to the right). Depending on what you want each page to do, you
have the option of dynamically controlling the column display using the joy of the descen-
dant selector.

Figure 2. Content area (shaded) and column layouts

Descendant selectors give you ultimate control of your designs. To recap, a selector such as
h3 {color: #000} would typically render all level 3 headings in a document black. That’s
easy. So let’s say you have an h3 in your sidebar, and you’d prefer it to render in red. Simply
create an h3 selector that is descendant of your sidebar, for example #sidebar h3 {color:
#FF0000}. Thus you have two selectors separated by a combinator—in this case a single
whitespace character, tailored to target a particular instance of an element in your XHTML
document. That’s a descendant selector, and More Than Doodles uses plenty of those.

So why not use this method for the opening body tag of each page? After all, assigning IDs
and classes to the body is the easiest way to control a number of selectors in your CSS, for
everything in your body section will be open to its influence if you so desire.

The XHTML

For this section, you are concerned with the following XHTML in any of the templates,
where “content” represents any display items contained within the columns:

<div id="primaryContent">
content

</div>

<div id="secondaryContent">
content

</div>

<div id="sideContent">
content

</div>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

188

6145_Ch10_CS1 1/11/06 6:07 PM Page 188

Ideally, if you didn’t want a secondary or side column on a particular page, you should
remove those elements from your XHTML to reduce page weight and avoid confusing
some search engines. However, for the purposes of this case study, you’ll keep them all in
as constants, and show or hide them depending on the attribute you specify in the open-
ing body tag.

A note about naming conventions
For the purposes of this case study, I’m using especially descriptive names for the columns.
Who is to say that #primaryContent won’t end up holding secondary content at some
point in the future, and vice versa? To clarify the following methods, let’s assume that we
have a static hierarchy in place, as it’s easier to visualize the layout if we think in these
terms. As #primaryContent remains in use at all times, it perhaps makes sense to name it
so for now.

Three-column layout

Let’s jump straight to the three-column layout used on the homepage. Including the follow-
ing element selector in the body tag will produce a thin sidebar, plus the two equal-width
columns to the right of it:

<body id="threeColLayout">

The properties of the middle, primary column are defined with the following CSS:

#threeColLayout #primaryContent {
float:left;
width:270px;
margin: 0 0 20px 195px;

}

The id selector threeColLayout in the body tag provides a vital hook with which to call in
the appropriate #primaryContent value. This is where the descendant selector comes in.
Notice that #primaryContent is preceded by #threeColLayout. Therefore, this version of
#primaryContent only comes into play when it is a descendant of #threeColLayout.

Also, the right, secondary column is defined as follows (this column is only used on a
three-column layout):

#secondaryContent{
float:left;
width:270px;
margin: 0 0 20px 15px;

}

MORE THAN DOODLES

189

CS1

6145_Ch10_8P 1/2/07 12:58 PM Page 189

Finally, there is the thinner, left column, or sidebar:

#sideContent{
float:left;
width:180px;
margin: 0 0 20px -750px;

}

You’ll learn how these columns are floated later, but first notice that each main column
has a set width of 270px. These, combined with the side column, will produce the three-
column layout shown in Figure 3.

Figure 3. Three-column layout

Two-column layout

The two-column layout is used on the gallery page. Replace the three-column body ele-
ment with the following one (note the adjustment of the id attribute):

<body id="twoColLayout">

Look at this CSS, which is added just after the original threeColLayout #primaryContent,
#secondaryContent, and #sideContent declarations:

#twoColLayout #primaryContent {
width:555px;
float:left;
margin: 0 0 20px 195px;

}

More Than Doodles

SideContent secondaryContentprimaryContent

#Footer

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

190

6145_Ch10_CS1 1/11/06 6:07 PM Page 190

Again, the descendant selector is used. The #threeColLayout version is ignored in this
instance, in favor of the #twoColLayout version, and as a result the primary column
stretches from 270px width to 555px width, without any adjustments to the content area
markup (see Figure 4).

Figure 4. Two-column layout

One-column layout

The one-column layout is used on the contact page. Simply assign the one-column id
attribute to the body tag as follows:

<body id="oneColLayout">

By specifying oneColLayout, the default CSS for primaryContent will be called:

#primaryContent {
width:750px;
margin: 0 0 20px 0;
background: #FFF;

}

More Than Doodles

SideContent primaryContent

#Footer

MORE THAN DOODLES

191

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 191

That’s a full-width column stretched to fit the containing wrapper, as shown in Figure 5.

Figure 5. One-column layout

Removing unwanted columns

Great, you want a two-column layout, but #secondaryContent is left in the XHTML? This
causes the potential problem of that column being displaced under the other columns.
Ideally, the secondaryContent element should be removed entirely to reduce page weight,
but if it isn’t (perhaps you are dynamically changing the id attribute based on a user
choice) and for the purposes of this example, it needs to be made invisible. Again this is
controlled using a descendant selector:

#twoColLayout #secondaryContent {
display: none;

}

Therefore, any instance of #secondaryContent used on a two-column layout page will be
hidden completely.

Finally, this approach can be further utilized for one-column layouts. Here, we are group-
ing two descendant selectors to ensure they have the same value; thus any instances of the
second or side columns are removed using display:none (see Figure 6):

#oneColLayout #secondaryContent, #oneColLayout #sideContent {
display: none;

}

More Than Doodles

primaryContent

#Footer

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

192

6145_Ch10_CS1 1/11/06 6:07 PM Page 192

Figure 6. Calculating widths

Remember, use display: none wisely. Leaving unwanted markup in a page only serves to
up the bloat quota. There is also a school of thought that suggests it’s a search engine
optimization no-no. Google may wonder why you are hiding content from the user, and
may assume you’re up to no good. Spare a thought also for anyone using a screenreader,
for hidden content still exists and will therefore be read by such devices.

Floating the columns
Earlier, I mentioned that our three columns are floated. There are several reasons why the
columns are floated inside the content area.

First, using negative margins in the CSS allows you to determine where the columns
appear (left, center, right) without compromising the semantic layout of the actual
XHTML. In the previous section, you will have noted that the primary column appears in
the center of our layout, visually to the right of the less important side column. Turn the
CSS off, and the primary column content will appear above the side column content in the
linear layout, owing to its placement in the XHTML.

Good stuff, but isn’t all of this negative margin positioning a little bit mathematical? Well,
yes it is, but with the initial calculations worked out, everything else just falls into place.
When it came to redefining #primaryContent for each rule in the previous section, only
the specified widths of the columns needed attention; the margins remained unaffected.

Total width 750px

SideContent secondaryContentprimaryContent

180px

195px

270px 270px

285px

MORE THAN DOODLES

193

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 193

The calculations

Now then, power up the calculator. Thankfully, this layout does not suffer from the woes
of box model variants or border widths, owing to the use of box modules that will later be
contained inside the columns. Those boxes have their own margins, so there is no padding
inside our columns. Therefore, the key figures here are the width of our containing wrap-
per and the widths and margins of the columns as specified in the CSS.

First, look at the CSS for the wrapper:

#wrapper {
width:750px;
margin:0 auto;
padding: 0 10px 10px 10px;
background-color: #D7D493;

}

This gives a page width of 750 pixels. Padding of 10 pixels is added left and right, but the
working content area remains 750 pixels regardless. Now look again at the CSS for the
three-column layout:

#threeColLayout #primaryContent {
float:left;
width:270px;
margin: 0 0 20px 195px;

}
#secondaryContent{
float:left;
width:270px;
margin: 0 0 20px 15px;

}
#sideContent{
float:left;
width:180px;
margin: 0 0 20px -750px;

}

What do we have here? Well, first the column widths. Taking the width value from each,
we get 270 + 270 + 180, which gives a total column width of 720 pixels. That leaves the
remaining 30 pixels to be made up from the two 15-pixel margins, and so the total column
width does equal the wrapper width of 750 pixels.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

194

6145_Ch10_CS1 1/11/06 6:07 PM Page 194

But wait: only one 15-pixel left margin is specified, in #secondaryContent. Where’s the
other? Well, note that #primaryContent has a left margin of 195 pixels. This results from
#primaryContent allowing space on its left for the 180-pixel #sideContent and a 15-pixel
margin between the two. And 180 pixels + 15 pixels = 195 pixels. Figure 6 shows this in
detail.

Floating the columns in the right place

So, the widths make sense, and the columns will fit together in any order. But they need to
be in a specific order. In the XHTML they appear as primary, secondary, side. On the styled
page, they need to be side, primary, secondary.

By specifying the float in each column, you ensure that the columns align left to right.
Without the float, they would of course appear on top of each other, and a little uneven
due to the various margin properties that would push them away from the side of the
wrapper.

Even if you didn’t include the #sideContent id attribute in your XHTML, or you hid it, the
primary column would still hold its ground 195 pixels from the left side due to its 195-pixel
left margin, and your secondary column would still sit directly to the right of it (see Figure 7).
Remove that left margin, and the two columns would sit flush with the left side of the
wrapper.

Figure 7. Three-column layout with #sideContent removed

More Than Doodles

secondaryContentprimaryContent

#Footer

MORE THAN DOODLES

195

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 195

But the side column comes last in the XHTML, so what makes it sit to the left of the two
other columns? Well, that’s where its –750-pixel left margin works wonders. The total
width of the two main columns, plus their left margins, is 270 + 270 + 15 + 195, totaling
750 pixels. Simply calling in #sideContent after those wouldn’t work, because the wrapper
isn’t wide enough, and anyway you want it to appear first. Therefore use a left margin of
–750 pixels to pull #sideContent into the 195-pixel gap to the left of the main column,
basically layering #sideContent over the dead space (Figure 8).

Figure 8. Floating #sideContent with a negative margin

Because any #primaryContent selector, be it a descendant or not, has the same negative
margin, this approach will of course work for both three- and two-column layouts.

With this in mind, it should be obvious that by carefully adjusting each column’s left
and/or right margin properties, it is perfectly possible to order the columns in any way you
wish, regardless of their position in the XHTML, just as long as the total widths of columns
and margins do not exceed the wrapper width.

Highlighting the current page
based on the body class

You’ve learned the merits of using id attributes in the body element, where an id attrib-
ute is specified to control layout. Now it’s time to add a further attribute to the body ele-
ment with the intention of highlighting the current page in the main menu (Figure 9).

There are numerous ways of highlighting the page you are on, and many designers might
use some clever PHP scripting to trigger the CSS, perhaps highlighting the Home link on
the menu if on the homepage. That’s cool, but it’s just as easy with a smart bit of CSS
application reliant on a simple class attribute.

More Than Doodles

secondaryContentprimaryContent

#Footer

SideContent

#sideContent pulled 750 px to the left
and laid over #primaryContent margin

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

196

6145_Ch10_CS1 1/11/06 6:07 PM Page 196

Figure 9. Highlighting the current page

Previously, you added an id to the body element to determine column layout. That leaves
you unable to use another id (you can combine classes, but not ids). Therefore for this
example, a class must be used to identify the nature of the selected page:

<body id="threeColLayout" class="home">

So the page is identified as the homepage. The next step is to identify each navigation link
with matching id names, as follows:

<ul id="mainNav">
Home
About
News
Interviews
Gallery
Careers
Forum
Members
Contact

Finally, in the CSS the relationship between the element selector in the body and the id
attached to each link is cemented. The first part, body.home, targets the action to instances
where the element selector is home. The second part, #mainNav a#home, looks inside the
#mainNav unordered list for a link identified as home. If a match is found, the action is per-
formed.

body.home #mainNav a#home {
color: #fff;

}
body.home #mainNav a:hover#home {
color: #000;

}

MORE THAN DOODLES

197

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 197

Thus, whenever the user views the homepage, the link color will be set to white (Figure 9),
but will still be black on rollover. The only remaining job is to replicate the CSS for every
unique link id, grouping the targets into a neat all-encompassing definition. Note that only
three links are shown here to save space:

body.home #mainNav a#home, body.gallery #mainNav a#gallery,
body.contact #mainNav a#contact {

color: #fff;
}
body.home #mainNav a:hover#home, body.gallery #mainNav a:hover#gallery,

body.contact #mainNav a:hover#contact {
color: #000;

}

Sure, that looks a bit unwieldy, but it’ll look worse when there are nine sections to account
for! It’s considerably less code than a PHP equivalent, and would be much worse if we
didn’t group the definitions.

Drop-in boxes for columns
The concept of the columns (#primaryContent, #secondaryContent, etc.) should be clear
by now, but what about their contents? Well, it’s pretty apparent that there is no point
having flexible columns that stretch dependent on selectors if their contents are fixed
width. Therefore, it is vital that you have at your disposal a containing box that can stretch
and contract based on the column it sits within. This is where the drop-in boxes come in.

On the design you’ll see that the white rounded corner areas sit just inside a slightly larger
shaded container. That’s a box. You can have as many boxes as you like inside a column, as
shown in Figure 10.

Figure 10. Two box containers inside the #primaryContent column

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

198

6145_Ch10_CS1 1/11/06 6:07 PM Page 198

The markup for the two boxes is as follows:

<div id="primaryContent">
<div class="box">
content

</div>
<div class="box">
content

</div>
</div>

The CSS for the box is very simple, and is not restricted by height, width, percentage, posi-
tion, float, or anything else. It consists merely of a tiled background image, a top margin to
separate each box, and left and right padding to contain the rounded corner area (which
we’ll look at in the next section):

.box {
margin: 15px 0 0 0;
padding: 5px 0 5px 0;
background:url(diags.gif);

}

With no physical restrictions in the CSS, .box is free to expand and contract dependent on
the column it lives in, and as a result it is used in all three columns.

Right-angled or rounded corners—you decide
Inside each box, you have two options. You can either use a flat white box with right-
angled corners, or you can opt for a juicily joyous white box with rounded corners.

Flat, right-angled corners

If you want the flat white box in the sidebar, simply call it in with the .cbside class:

<div class="box">
<h2>Latest Interview</h2>
<div class="cbside">
content

</div>
</div>

MORE THAN DOODLES

199

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 199

The CSS is as follows:

.cbside {
width:160px;
margin: 5px 0 0 10px;
padding: 10px 0 5px 0;
background: #FFF;

}

Fine. That looks OK, for a box. It sits nicely inside the .box shaded container in the sidebar.
However, this site needs a bit more oomph, and you have the option of using the amazing
flexible transparent custom corners and borders.

So, let’s prepare for something special

Instead of .cbside, use .cbb, as follows:

<div class="box">
<h2>Latest Interview</h2>
<div class="cbb">
content

</div>
</div>

Now, .cbb does two things here. First, it acts as an alternative display style for any users
not fortunate enough to have JavaScript enabled on their browser, and as it stands will
produce a flat white box exactly like the one created by the .cbside class. Here’s the CSS:

.cbb {
margin: 0 10px 0 10px;
background: #FFF;
padding: 5px 0 5px 0;
line-height: 170%;

}

This is nothing particularly special as it stands, but this class also acts as a hook for the
JavaScript. What? JavaScript? Yes, and there are a hundred reasons why.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

200

6145_Ch10_3P 3/29/06 5:03 PM Page 200

Transparent custom corners and borders
Credit for this superb technique must go to talented Swedish designer Roger Johansson
(www.456bereastreet.com/archive/200505/transparent_custom_corners_and_border),
who has honed this method to near perfection. Essentially, the goal is to create beautiful,
stretchy custom corners and borders without adding a barrage of meaningless divs for
each and every instance.

Another bonus is that this method allows the use of transparent background images to
achieve the effect. Thus, the custom corners will expand to fit the content they contain,
and can sit on any background color or pattern.

Note also that if the user does not have JavaScript enabled on their browser, a default, corner-
less box will replace the rounded corners, ensuring content is still housed appropriately
(Figure 11).

Last but not least, the CSS can be used to exploit a filter to ensure browsers unable to dis-
play PNG images receive transparent GIFs as an alternative. For my money, this technique
is just about flawless.

Figure 11. With JavaScript enabled (left), and without (right)

The JavaScript searches for any classes named cbb and replaces them with all the appro-
priate divs required to achieve the effect. Your source code will still show class="cbb"
and none of the divs inserted by the JavaScript. It’s super neat.

Be sure to copy the JavaScript file and upload it to your server, and include the following
statement in the head section of your pages:

<script type="text/javascript" src="cb.js"></script>

MORE THAN DOODLES

201

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 201

The images

Next, you need to create two images to be positioned around the content by the CSS. The
technique uses just two images rather than lots of individual corner images to reduce
server requests and make things easier to rework if need be. I suggest grabbing either my
images or Roger’s original images and manipulating them to your own needs. For More
Than Doodles the main image emulates the sketchy header graphic while still showing a
thin rounded white border (Figure 12).

Figure 12. The box image (shown at reduced width)

Notice the image is big—a width of 1600 pixels. This is mainly so that it is large enough to
cope with very wide liquid layouts on any screen resolution. If, like me, you are limiting
your design to something under 800 pixels, there is no need to make such a long image.
The CSS will be throwing this image all over the place and chopping pieces out of it to cre-
ate the right-sized box and horizontal borders as dictated by its container (Figure 13).

Figure 13. The border image

The border image fulfills several roles. Both the left and right borders are shown in the tiny
tile, and we’ll use the CSS to pull this image left or right and tile it vertically as required.

Remember, until IE 7 is widely used, it’s important to assume that the user’s version of IE
has no support for alpha transparency PNGs. So, if you care about IE users, you’ll need to
make two GIF versions of these images.

The CSS

The next step is to grab the following CSS and adjust it to your needs. The default CSS cre-
ated by Roger is available with his tutorial, but here we’ll look at the version I have
tweaked. Let’s look at each chunk of the CSS separately. First, we specify .cb (custom
border), the class used by the JavaScript to replace .cbb (the non-JS version):

.cb {
margin: 0.5em 0;
line-height: 170%;

}

Next we need to define the classes that will place the top custom corners and horizontal
borders. The first thing to note is the use of the !important declaration. We need this
where we specify the transparent PNG image for good browsers that support PNGs. Directly
below that we specify the GIF image for IE/Win and other platforms with no PNG support:

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

202

6145_Ch10_CS1 1/11/06 6:07 PM Page 202

.bt {
background:url(box.png) no-repeat 100% 0 !important;
background:url(box.gif) no-repeat 100% 0;
margin:0 0 0 18px;
height:27px;

}
.bt div {
height:27px;
width:18px;
position:relative;
left:-18px;
background:url(box.png) no-repeat 0 0 !important;
background:url(box.gif) no-repeat 0 0;

}

This double background declaration appears throughout the CSS, as you’ll see. Note also
the various positioning rules for our main corner image. Next we define similar rules for
the bottom corners and vertical borders:

.bb {
background:url(box.png) no-repeat 100% 100% !important;
background:url(box.gif) no-repeat 100% 100%;
margin:0 0 0 12px;
height:14px;

}
.bb div {
height:14px;
width:12px;
position:relative;
left:-12px;
background:url(box.png) no-repeat 0 100% !important;
background:url(box.gif) no-repeat 0 100%;

}

Then add the CSS for the borders—first left, and then right:

.i1 {
padding: 0 0 0 12px;
background:url(borders.png) repeat-y 0 0 !important;
background:url(borders.gif) repeat-y 0 0;

}
.i2 {
padding: 0 12px 0 0;
background:url(borders.png) repeat-y 100% 0 !important;
background:url(borders.gif) repeat-y 100% 0;

}

MORE THAN DOODLES

203

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 203

Finally, the appearance of the main content inside the borders needs controlling. Use this
to set the background color (ensure it matches your corner and border images!) and insert
some padding between the borders and the content:

.i3 {
background:#FFF;
border: 1px solid #FFF;
border-width:1px 0;
padding:0 5px;

}

A word of caution is needed here. The use of the !important declaration should be
restricted to very special case scenarios only, as it exists not to filter for browsers but to
create a balance of power between author and user stylesheets—a critical concept in
accessibility.

For more detail about the various positioning properties in the CSS, be sure to visit Roger’s
detailed tutorial “Customising custom borders and corners” (www.456bereastreet.com/
archive/200506/customising_custom_corners_and_borders/), which uses a simple
diagram to explain the way the images are broken up and how this correlates exactly with
the CSS.

Combining classes for targeted actions
Now, I mentioned in the section about highlighting the current page that it is possible to
combine classes. This functionality provides real power when it comes to reusing elements.
For example, you can use .box as often as you want, but you may not always want the ele-
ments it contains to be equal. So, you could make several versions of .box and set the
unique properties for each, but why would you want to repeat the margin, padding, and
background styles for each and end up with more class names to worry about? This is
where combined classes come in.

Now, if you wanted every h3 inside every box to have a green background, you might cre-
ate the following styles:

h3 {
text-transform: uppercase;
display: inline;
font-size: 92%;
margin: 10px 5px 0 5px;
padding: 2px;

}
.custom_background {
background: #F762E0;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

204

6145_Ch10_3P 3/29/06 5:16 PM Page 204

You might then call that as follows:

<div class="box">
<h2>Latest Interview</h2>
<div class="cbb">
<h3 class="custom_background">My Green Header</h3>
content

</div>
</div>

Argh! You’re getting the extra markup blues—forced to always have that attribute plugged
into the heading. No, no, no. Instead, create unique background headers for each section,
keeping the existing h3 declaration and then creating a set of background styles with
semantically meaningful names:

.default h3 {
background: #F6CE45;

}
.careers h3 {
background: #F762E0;

}
.one_man h3 {
font-size: 110%;
background: #B18FD1;

}
.interviews h3 {
font-size: 110%;
background: #D7D493;

}
.profiles h3 {
background: #C4DDB8;

}

Then, all you need to decide is the purpose for each box included in each column. Let’s say
you place a box to house the latest interviews. Add the interviews attribute to the exist-
ing box class, separating the two class names with a whitespace character:

<div class="box interviews">
<h2>Latest Interview</h2>
<div class="cbb">
<h3>An Interview with Richard May</h3>
content

</div>
</div>

MORE THAN DOODLES

205

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 205

Suddenly, all instances of a level 3 heading inside this box take on the green background
color (Figure 14). Exchange the word “interviews” for “default” and now all headings in
that box have a yellow background. Remove the heading rule entirely, and headings have
no background color at all. Notice that I’m also adjusting text sizes of some headings
dependent on which section it is, by adjusting font-size. The world is my oyster here.

Figure 14. Controlling header background color using class combinations

Image classes and exceptions
Key to keeping markup lean is avoiding the use of extraneous divs and classes all over the
place. By defining the behavior of certain tags in the CSS, you can cut down bloat signifi-
cantly. In some cases this calls for a global definition, and in other cases it just requires a
definition for a tag placed within a certain area of our page.

Default images

First, define rules common to all images on the page. It is then up to other styles to over-
ride these. By default, all images will have a 2-pixel border, and bottom and right margins
of 5 pixels. They will all float left:

img {
float: left;
margin: 0px 0 2px 5px;
border: 2px solid #C5BDBD;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

206

6145_Ch10_CS1 1/11/06 6:07 PM Page 206

Owned images

For any images in the default boxes—the pencil icons—I didn’t want the 2-pixel border
(Figure 15). So I set border to 0:

.default img {
border: 0;

}

Figure 15. In the left box, the thumbnail is using the default image style. On the right, in the default
box, the pencil icons have no border thanks to the .default img descendant selector.

Larger images

Larger images need class="mainImage" in the markup to set them apart. This is a small
price to pay for layout control. For these larger images, I didn’t want them to float, since
that causes the image to be pushed to the left and everything else to the right in a two-
column layout (Figure 16).

Figure 16. .mainImage as it appears in a #twoColLayout if the float is not set as float: none

MORE THAN DOODLES

207

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 207

So that can be fixed with float: none, which overrides the default img float declaration.
Removing the float also means there is no need to clear the float and force the container
to expand to hold it. Still, even if the image isn’t floated, it will still produce a jumble of
items (Figure 17).

Figure 17. .mainImage as it appears in a #twoColLayout without display: block

So a top margin is declared to space the header and image apart, and also increase the
border width slightly. Also, set it to display:block so that the image will force the header
and other bits to appear below it in a one-column layout (Figure 18) and a two-column
layout (Figure 19).

.mainImage {
display: block;
float: none;
margin-top: 4px;
border: 3px solid #C5BDBD;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

208

6145_Ch10_CS1 1/11/06 6:07 PM Page 208

Figure 18. .mainImage as it appears in a #twoColLayout with display: block specified

Figure 19. .mainImage as it appears in a
#threeColLayout layout

MORE THAN DOODLES

209

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 209

Thus, you always have complete control of .mainImage, illustrating how simple it is to
make an exception to a blanket rule. Admittedly, you’ll need to add class="mainImage" to
the larger images to force this override, but it seems a small price to pay to cut out all the
other divs. If certain images need special treatment, I recommend that these be the ones
you use least, given that they’ll require the extra XHTML.

Dealing with links
How could we look at advanced CSS without discussing checked-off visited links? To be
honest, the technique is not that advanced, and using background images with link states
has become increasingly common over the last 18 months. We’ll also look at how to dis-
tinguish external links from links within your own site.

Understanding the sidebar links

Notice that the sidebar links are clickable for the whole sidebar width. This is because the
CSS declaration display:block is used in conjunction with a set width, specifying a sensi-
tive area longer than the actual link text.

Be aware here that any properties not declared for your sidebar links will be inherited
from the default link states specified much earlier in the stylesheet.

Checked-off visited links

It’s easy to show a user which links they have visited. Usually you would set the a:visited
link class to a different text color to indicate this. Everybody does that, but using just one
CSS background image, you can create an image trick to do this for you. As Figure 20
shows, More Than Doodles uses a checkmark to the right of all visited links, or an arrow
appearing on hover to further entice the user to follow that link.

Figure 20. Checked-off visited links

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

210

6145_Ch10_CS1 1/11/06 6:07 PM Page 210

First, create the background image. Be very careful to keep the dimensions as specified in
Figure 21. You will use background-position to shift this image up and down by the
appropriate number of pixels, showing a checkmark or an arrow as required. For example,
the hover state specifies the image be moved up by 20 pixels, thus hiding the first 15-pixel
bar and 5-pixel space of the image and making the bar with the arrow visible on rollover.
For a visited link, everything moves up 40 pixels, making the bar with the checkmark view-
able instead.

Figure 21. Dimensions for our checked-off links image

The CSS is pretty simple, and makes full use of the display:block and set width discussed
earlier. Note that all list elements are owned by .cbSide:

.cbSide ul {
list-style-type: none;
margin-top: 0px;
margin-left: 0;
margin-bottom: 0;
padding: 3px;

}

.cbSide li a:link {
color:#333;
line-height:150%;
text-decoration:none;
display:block;
width:154px;
border-bottom: 1px solid #EDEAEB;
background: #FFF url(ticks.gif);

}

.cbSide li a:active {
color:#333;
line-height:150%;
text-decoration:none;
display:block;
width:154px;
border-bottom: 1px solid #EDEAEB;
background: #FFF url(ticks.gif);

}

154px

15px

5px
60px

MORE THAN DOODLES

211

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 211

.cbSide li a:hover {
color:#990000;
line-height:150%;
display:block;
width:154px;
border-bottom: 1px solid #EDEAEB;
background: #FFF url(ticks.gif) 0px -20px;
text-decoration:none;

}

.cbSide li a:visited {
color: #999;
text-decoration:none;
line-height:150%;
display:block;
width:154px;
border-bottom: 1px solid #EDEAEB;
background: #FFF url(ticks.gif);
background-position: 0 -40px;

}

One of the things I don’t like about this method is the fact that I have to repeat the decla-
rations for each link state. Ideally, the common values would all be placed within a
.cbside li rule, but for one reason or another this resulted in an odd display in some
browsers.

LAHV, not LVHA
It is widely accepted that CSS declarations for links should be arranged as link, visited,
hover, active (or LVHA—“LoVe HAte”). I agree, but I like to have visited links show as
checked off regardless of the hover state. This method goes against the expected behav-
ior, but it’s perfectly acceptable to change the order to achieve a desired effect. Thus, by
organizing my link styles as LAHV (or “Let’s All Have Vegetables”) I can ensure that the vis-
ited state always has importance over the hover state. Therefore, on rollover, the check-
mark remains and the arrow doesn’t show.

Once you understand how the background-image and background-position properties are
combining to create the effect, try resizing the image rows and adjust the CSS accordingly.
For more information about this technique, and to copy the code and see it in action, visit
www.collylogic.com/index.php?/weblog/comments/ticked_off_links_reloaded. Some
designers have been very creative with this method, and remember you can make use of the
whole background width, not just the far-right area. Go mad.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

212

6145_Ch10_3P 3/29/06 5:18 PM Page 212

Highlighting external links

Here attribute selectors are used to identify the links that don’t belong to our domain. The
goal is to find a link that matches with the domain specified and ignore it. Likewise, any
domains unrecognized by the CSS will be rendered with 10 pixels of padding to the right,
into which is inserted our external link icon (Figure 22).

Figure 22. The external link to the Black Convoy website is clearly marked with an icon.

Here’s how it works. First, notice that the action is targeted at any links within the content
boxes that are combined with the default class, using an ID selector combined with a class
selector—#box.default, Next, see that the link property is immediately followed by a
declaration inside square brackets. This is the attribute selector, and for the first rule it is
targeting all links that are absolute, hence the http://. Note that in that case, the padding
and icon are attached to the link.

The second rule makes the exception for any links we specify; typically this will be those
relating to the domain of the website.

The CSS itself might look a little alien at first:

.box.default a[href^="http:"] {
background: url(external.gif) no-repeat right top;
padding-right: 10px;

}
.box.default a[href^="http://www.morethandoodles.com"],
.box.default a[href^="http://morethandoodles.com"] {
background-image: none;
padding-right: 0;

}

Be warned that this method is currently only supported in Safari, Opera, OmniWeb, iCab,
Konqueror, and Mozilla, but not IE. Although part of the CSS 2 specification, lack of imple-
mentation in IE means such methods are unfamiliar to many people. Microsoft has prom-
ised better support for attribute selectors with the forthcoming release of IE 7, which can
come as some consolation to the weary developer.

MORE THAN DOODLES

213

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 213

Floated drop shadows (gallery)
The challenge here is to apply CSS to images to create the effect of a framed photograph
placed on the page and casting its own shadow. It is an effect many people choose to
apply in Photoshop prior to uploading an image, but this is not very forward thinking in
that it would require all images to be reworked for future redesigns.

Casting the shadows

First, create the shadow image that will create the effect. It’s massive, but this ensures that
it can cope with any given image size (Figure 23).

Figure 23. Bottom-right corner of the drop shadow background image (cropped for this page)

The first task is to wrap all the appropriate images with the following markup:

<div class="img-wrapper">

</div>

The .img-wrapper class places the drop shadow under the image, placing it bottom right,
and moving the image 20 pixels from the top and 40 pixels from the right. It is defined as
follows:

.img-wrapper {
margin: 20px 40px 0 0;
background: url(shadow.gif) no-repeat bottom right;
line-height:0;

}

Next a class selector and descendant element selector are used to control the style and
position of the image contained inside .img-wrapper. Here the border and padding is
placed around the image. Note that as per the .mainImage style earlier in the chapter, I
also need to differentiate this class from the default image classes, so I again specify
float: none and so on:

.img-wrapper img {
float:none;
margin:0;
background:#fff;
padding:4px;

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

214

6145_Ch10_CS1 1/11/06 6:07 PM Page 214

border:1px solid #C5BDBD;
position:relative;
left:-5px;
top:-5px;

}

Using relative positioning, the image is pulled up by 5 pixels and left by 5 pixels. This allows
room for the bottom and right side shadow to appear. Padding of 4 pixels is applied to dis-
tance the 1-pixel border from the image itself, and the background color is set white to
color the frame. The end result is an image with a perfect border, padding, and drop
shadow.

Floating the images

On the More Than Doodles gallery page, I’m showing the nine latest images added to the
gallery. Arranging these in rows could easily be achieved using good old table rows and
columns, but think of the children. Instead, simply float the images next to each other, and
they can force new rows based on the width of their container (Figure 24).

Figure 24. Floated drop shadow images

First, the following adjustment needs to be made to the image container:

.img-wrapper {
float:left;
margin: 20px 40px 0 0;
background: url(shadow.gif) no-repeat bottom right;
line-height:0;

}

Adding float: left will force the images to line up side by side rather than on top of
each other, as long as there is enough available space. When there is no more space, they’ll
wrap to create a new line.

MORE THAN DOODLES

215

CS1

6145_Ch10_CS1 1/11/06 6:07 PM Page 215

Summary
It goes without saying that More Than Doodles consists of many more techniques than I
have been able to discuss in this case study, and that some of them may need a certain
amount of tweaking for your own projects. That said, all the ones discussed are flexible
and relatively problem-free.

The site is online at www.collylogic.com/morethandoodles/, and the source code is avail-
able for download at www.friendsofed.com, so feel free to copy and rip apart the XHTML
and CSS to help come to grips with some of the methods.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

216

6145_Ch10_CS1 1/11/06 6:07 PM Page 216

CASE STUDY 2

TUSCANY LUXURY RESORTS

0px / 0%

100px

250px

<h2>

by Cameron Moll

6145_Ch11_CS2 1/11/06 6:08 PM Page 217

Having astutely read the chapters in this book, you’re now prepared to render living exam-
ples of the techniques Andy has presented. Simon and I have teamed up to produce two
layouts that are both strong in aesthetics and solid in code. We’ve utilized a fair share of
the methods covered in this book, while introducing additional flair of our own. You’ve
already seen Simon’s case study, so now it’s time for me to share some other valuable
techniques with you.

After you’ve finished this book, the onus will then lie with you to study all the techniques
contained within, implement them in the projects you’re involved in, and make the Web a
better place for users from all walks of life. No pressure—we’re confident you can do it!

In this case study you will learn about

The fluid layout

Alignment of elements using absolute positioning

Background image techniques

Image replacement

Fluid imagery

How to use a single list item for multiple elements

About this case study
Tuscany Luxury Resorts is a fictitious organization whose equally fictitious website was cre-
ated expressly for this case study (Figure 1 shows the homepage). The CSS techniques
employed in this case study, however, are anything but artificial. Each technique was care-
fully selected with the intent of providing you with an arsenal of advanced CSS techniques,
most of which are quick to amaze and easy to implement, and have been thoroughly
tested in real-world environments.

The goal of this case study is to demonstrate the ability to code fluid layouts, elegant
background imagery, and complex menus without compromising aesthetics or having to
resort to superfluous markup and code. In other words, we hope you walk away convinced
that web standards don’t restrict but rather enhance your ability to produce a successful
website.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

218

6145_Ch11_CS2 1/11/06 6:08 PM Page 218

Figure 1. Tuscany Luxury Resorts homepage

The fluid layout
If we were to stand back and observe the visual evolution of the typical web layout from
the early 1990s through today, we might summarize it as follows:

Monospaced, ASCII goodness

Text-only pages, default 100 percent width

A few images, lots of text, 100 percent width

More images, still lots of text, some width constraints

Lots of images, lots of tables, lots of width/height constraints

Flashy stuff flying everywhere, lots of width/height constraints

Less flashy stuff, still lots of tables, lots of fixed widths

Lots of fixed widths, fewer tables, some CSS

Lots of fixed widths, CSS goodness

We’ve come a long way, haven’t we? Gone is the archaic, text-only, 100 percent width
legacy code, replaced with complex CSS trickery and fixed-width indulgence.

But what about 100 percent widths? Are they the bane of early web development, or a
technique still worth considering? I presume full-width layouts naturally began to fall by
the wayside as monitors increased in size and resolution, resulting in wide line lengths if no
width constraints were in place. However, once schooled in the techniques described in
this case study, you’ll be armed to resurrect the full-width layout in style.

TUSCANY LUXURY RESORTS

219

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 219

Full-width layouts have come to be known as fluid layouts, also referred to as flexible or
liquid layouts. Whatever the term, they all denote a layout’s ability to expand and contract
as the browser width expands and contracts.

Tuscany Luxury Resorts employs a fluid layout in full glory. This is accomplished using six
segments in the document’s structure:

Body

Container

Masthead

Content

Sidebar

Footer

A wireframe for this underlying structure looks something like the one shown in Figure 2.

Figure 2. Wireframe for Tuscany Luxury Resorts

Body

Container

Footer

Masthead

Content Sidebar

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

220

6145_Ch11_CS2 1/11/06 6:08 PM Page 220

Body and container

To begin coding, start with the core element of your markup, the body element. Nothing
special is required for the body when coding a fluid layout compared to a fixed one, but
for Tuscany Luxury Resorts a margin and white background are needed to create the effect
of having a white border around the layout:

body {
margin: 10px;
background: #FFF;

}

Create a containing div to house everything except the footer. Give it a selector ID of con-
tainer:

<div id="container"></div>

Typically, if you were creating a fixed-width layout, you would specify width and margins,
probably something like this:

#container {
margin: 0 auto;
width: 760px;

}

However, a fluid layout requires neither. In fact, the only reason you need a containing div
is to control the background in the lower half of the page. You’ll define styling for #con-
tainer in the “Content and sidebar” section.

Masthead

I often refer to the top portion of a site containing logo, navigation, and other site-wide
elements as the masthead, a term derived from the publishing world in reference to the
date, logo, contact information, and editorial board of a publication. Though not a perfect
application of the term in an online sense, it seems to be more appropriate than vague
terms such as header or top bar.

On that note, add a div inside #container for the masthead:

<div id="container">
<div id="masthead"></div>

</div>

Again, no special trickery in the CSS, aside from position: relative and a background
image, both covered later in this case study:

#masthead {
position: relative;
background: #F7F7F4 url(../img/bg_repeat.gif) repeat-x;

}

TUSCANY LUXURY RESORTS

221

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 221

I take that back—you do need a bit of trickery. Ideally you want the entire masthead to
have a height of 246 pixels to properly contain all of its elements. If you were using a fixed
height, your code would look like this:

#masthead {
position: relative;
background: #F7F7F4 url(../img/bg_repeat.gif) repeat-x;
height: 246px;

}

However, as you’ll learn later in this case study (see “ ‘Bulletproofing’ a Background”), you
need to allow the entire #masthead element to be resized by those users who have diffi-
culty reading at default text sizes. Therefore, convert your height from a fixed one to a
more flexible one using an em value:

#masthead {
position: relative;
background: #F7F7F4 url(../img/bg_repeat.gif) repeat-x;
height: 15.4em;

}

Now users can increase the text size without breaking the layout. This method isn’t with-
out flaw, however. Because you’re using em instead of px, if for some bizarre reason users
scale text down in size instead of up, the height of the masthead will be less than 246 pix-
els and things will begin overlapping. However, if users will be resizing, you can assume the
greater number of them will be resizing text up, not down, and so leave the code as is.

Content and sidebar

While the lower area of the layout (Figure 3) utilizes several backgrounds, here we’re con-
cerned with the background used to create the appearance of two columns separating the
main content (“Lavish Luxury, Unsurpassed Comfort” and everything beneath it) from the
sidebar content (“Sublime Retreat,” “Incomparable Amenities,” and “Indulgent Wellness”).

Figure 3. Content (left) and sidebar (right) areas

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

222

6145_Ch11_CS2 1/11/06 6:08 PM Page 222

To accomplish this two-column effect, you’ll use a technique called faux columns, which
Andy has already covered in Chapter 7. However, there’s nothing wrong with revisiting the
technique here!

The technique is quite simple. First, use Photoshop (or similar program) to create a back-
ground image 1600 pixels wide by 10 pixels tall. Fill the left half of the image with a lighter
background color (#E2E2D2) and the right half with a darker background color (#D6D6BF).
I’ve also added a subtle drop shadow just to the right of the left half (see Figure 4).

Figure 4. Tile image, bg_container.gif, used for faux columns

In a moment you’ll constrain the layout to expand only up to 1200 pixels, but a width of
1600px allows you to increase the layout width later on down the road without having to
re-create the background image. In reality, you could create the faux column background
as wide or as narrow as you please, as long as it fills the entire #container element.

Next, create two divs to act as the columns, one for the main content area and the other
for the sidebar:

<div id="container">
<div id="masthead"></div>
<div id="content"></div>
<div id="sidebar"></div>

</div>

Then, add your faux column background to #container:

#container {
background: url(../img/bg_container.gif) repeat-y top center;

}

The value repeat-y instructs the background to tile only vertically, while top center tells
it to tile starting at the top and centered on the page. The value top isn’t really necessary,
as for this particular background it doesn’t matter if it tiles vertically from the top, center,
or bottom of the page. However, the second value, center, is critical, as it centers the
background horizontally, positioning the two columns evenly on the page.

You’re probably wondering, “Why not just do a background in each column?” Alas, one of
the frustrating features of CSS is that block elements stretch vertically only as far as the
content within it. Therefore, if the content in the #content column were taller than the
content in the #sidebar column, the background for #content would run all the way to
the bottom while the background for #sidebar would stop short of it. Using faux columns
trumps this issue and provides a way to make each column appear equal in height.

1600px0px

TUSCANY LUXURY RESORTS

223

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 223

Fluid properties
Crucial to fluid layouts are widths that expand and contract based on the browser’s width.
To accomplish this effect, use percentage values (%) instead of px or em. Accordingly, per-
centage values are used in setting widths for the #content and #sidebar selectors. Each
should fill half of the page (50 percent) horizontally, and the float property is used to
align them adjacent to each other:

#content {
float: left;
width: 50%;

}
#sidebar {
float: left;
width: 50%;

}

But herein lies a problem. Internet Explorer has an issue with tolerance (the ability to cal-
culate elements floated adjacent to one another). Two floated divs set to 50% are miscal-
culated as being too wide for the page, so IE stacks them on top of each other. But no
worries—just change the width for #sidebar to 49.9% and you’re good to go:

#content {
float: left;
width: 50%;

}
#sidebar {
float: left;
width: 49.9%;

}

It’s important to note here that Safari doesn’t like our decimal value and therefore rounds
down the width value to 49%. This leaves a sizable gap just to the right of the sidebar area
only in Safari. So we’ve fixed one problem (IE) but created another (Safari). If you and your
users can live with the gap, leave it as is. If not, however, introduce a hack that presents a
value of 49.9% to IE and a value of 50% to Safari:

#sidebar {
float: left;
width: 50% !important;
width: 49.9%;

}

IE/Win will now process the second declaration of 49.9%, whereas Safari, Firefox, and
Opera will process the first declaration of 50%.

Finally, wrap the content for each column in a shell:

<div id="container">
<div id="masthead"></div>
<div id="content">

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

224

6145_Ch11_CS2 1/11/06 6:08 PM Page 224

<div class="shell">Content goes here</div>
</div>
<div id="sidebar">
<div class="shell">Content goes here</div>

</div>
</div>

The shell becomes necessary to add fluid pseudo-like padding on either side of the con-
tent, without affecting the tiled background that spans the full width of the content and
sidebar areas:

.shell {
margin: 0 auto;
width: 85%;

}

Footer

Typically, every element of a layout is wrapped inside a containing block for the entire
page, in this case #container. However, when using faux columns, I prefer to have the
footer reside outside the containing block that has the faux column’s background image in
it. This is a surefire way of preventing the background image from tiling down the rest of
the page.

Accordingly, add a div with an ID of footer just after #container:

<div id="container">
<div id="masthead"></div>
<div id="content"></div>
<div id="sidebar"></div>

</div>
<div id="footer"></div>

The styling for the footer is rather simple, requiring only a background image and padding
to round out the layout:

#footer {
padding: 8px 0 1em;
background: url(../img/bg_barbottom.gif) repeat-x top left;

}

Resolving fluid layout issues

To sing the praises of fluid layouts would be foolish without first confronting the problems
they present. Naturally, the bulk of these issues are due to the fact that the width is resiz-
able. An overly wide width, for example, will result in long line lengths, which tend to
make onscreen reading a bit difficult. Conversely, a narrow width will eventually force
undesirable soft breaks and overlapping.

TUSCANY LUXURY RESORTS

225

CS2

6145_Ch11_3P 4/3/06 4:32 PM Page 225

To address these issues, the Tuscany Luxury Resorts site relies on min-width and max-width
to define a minimum and maximum width for the entire layout. These properties are
defined for both the #container and #footer ID selectors—the two primary containing
blocks for the layout.

The initial code is rather simple:

#container, #footer {
min-width: 740px;
max-width: 1200px;

}

As 760px is a common value for fixed-width layouts, here you use 740px to account for the
10-pixel left and right margins in the body (760 – 10 – 10 = 740). This defines the minimum
width for the layout.

The maximum width is set at 1200 pixels. This allows the layout to display full-width for
screen resolutions up to 1280 pixels in width. Beyond that, the layout stops stretching, pre-
venting unreasonable line lengths.

But there’s a catch. Not surprisingly, IE 6 and below fails to offer support for min-width
and max-width. There’s a way around the issue, but it means using a proprietary extension:

#container, #footer {
width: expression(document.body.clientWidth < 740? "740px" :
document.body.clientWidth > 1200? "1200px" : "auto");

}

This JavaScript expression sets the width value to 740px if the body of the page is less than
740 pixels wide and to 1200px if it’s wider than 1200 pixels.

Sadly, this proprietary extension invalidates the CSS. Therefore, we keep this code in a
separate CSS file, ie.css. Also, we expect IE 7 to offer support for min-width and
max-width—another reason to keep this hack separate from the master CSS so you can
delete it later when it’s no longer necessary.

Aligning elements using absolute positioning
In technical jargon, absolute positioning gives you freedom to precisely position an ele-
ment anywhere on the page in relation to its containing block. Or, in layman’s terms, it
allows you to position a “child” element (e.g., p id="copyright-date") in relation to
a “parent” element (e.g., div id="footer"). Although there are other values for the
position property (static, relative, fixed), we’ll cover only absolute positioning here.

Imagine coding a set of div, p, and strong elements as you normally do. Each will be posi-
tioned in relation to the item before it in the markup flow. Think of it as a game of Tetris, where
each block must reside on top or to the side of the adjacent blocks already in the game.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

226

6145_Ch11_CS2 1/11/06 6:08 PM Page 226

In contrast, when coding the same set of tags with absolute positioning, each will be posi-
tioned in relation to the containing block or parent element, regardless of markup flow.
Child elements can reside next to each other, they can overlap one another, or they can
even be positioned anywhere outside the area of the parent element. Think of it as play-
ing with Lego blocks, where each block can be stacked next to other blocks, on top of
other blocks, or completely apart from the main group of blocks.

The top, bottom, left, and right properties determine positioning, while the z-index
property determines stacking order, or the hierarchal order in which elements overlap one
other.

Location properties (top, bottom, left, right)

Before we dive into location properties, let’s be sure you understand a key point of posi-
tioning a location. The property and value of position: relative does not force a parent
element to be positioned relative to another element, but instead forces any child
elements to be positioned relative to the parent element (the one that’s marked with
position: relative).

Consider this example:

/* 'position:relative' tells any elements inside this h2
to be positioned relative to it /*

h2 {
position: relative;
width: 250px;
height: 100px;

}

This bit of code instructs any elements inside this heading to be positioned relative to the
width and height of the h2. By default, all child elements are positioned relative to a par-
ent element anyway. But you insert this bit of code so that you can force absolute posi-
tioning on the child elements and ensure they will be positioned in relation to the parent
element.

The location properties for positioning an element are

top

bottom

left

right

Values for each of these properties are

px

em

%

TUSCANY LUXURY RESORTS

227

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 227

Any combinations of these properties and values are calculated in relation to the contain-
ing block or parent element. So, a location of bottom: 50px and left: 30px will position
a child element 50 pixels from the bottom and 30 pixels from the left of its parent ele-
ment. Also, values may be mixed, such as bottom: 50px and left: 3em.

Consider Figure 5, which demonstrates the width and height of the h2 above, as well as the
values of the upper-left and lower-right corners.

Figure 5. The h2 element, with its dimensions and corner values

The upper-left corner has a value of 0px or 0%, while the lower-right corner has a value of
250px or 100%. Any location inside the element is calculated based on those two corner
values.

Putting this into practice, let’s say we place a strong tag inside the h2. To position it
absolutely, you would use the following:

/* This strong element will be positioned relative to the h2,
with an absolute position of 0 pixels from the top and 10 pixels
from the left of the header */

h2 strong {
position: absolute;
top: 0;
left: 10px;

}

The location properties of top: 0 and left: 10px tell the strong element to be posi-
tioned 0 pixels from the top and 10 pixels from the left of the h2, as shown in Figure 6.

0px / 0%

100px

250px

250px / 100%

<h2>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

228

6145_Ch11_CS2 1/11/06 6:08 PM Page 228

Figure 6. The strong element, positioned at the top left

We could have coded the same strong element with bottom: 0 and right: 10px and it
would have been positioned as shown in Figure 7.

Figure 7. The strong element, positioned at the lower right

Stacking order (z-index)

The z-index property allows you to determine the stacking order of elements. The z is in
reference to the z-axis, which tells us we’re dealing not with left or right positioning (x-axis)
or top or bottom positioning (y-axis) but with stacking and overlapping in a 3D sort of way—
how each element stacks or overlaps the other elements within a containing block. This z-
index is critical when elements overlap and the default markup flow with built-in defaults for
stacking won’t suffice, as is the case quite often when using absolute positioning.

Two values can be used with z-index:

Integers (e.g., 0, 1, 2, 100)

auto

The value auto is the default value, and you’ll likely use this value only to override another
style declared elsewhere in your CSS. Most of the time you’ll use integers.

When using integers, the element with the higher z-index will appear on top or in front of
elements with lower z-index values. Imagine holding a deck of face cards in your hand. If
you were to count from 1 to 10 by placing the cards in a stack, the bottom card in the
stack would be a 1 and the top card would be a 10. It’s the same with z-index. An element
with a value of 1 will always be beneath an element with a value of 10 within the same
containing block.

10px

<h2>

10px

<h2>

TUSCANY LUXURY RESORTS

229

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 229

For example, consider the following two elements:

<div id="product">
<div id="sale-price"></div>
<div id="product-photo"></div>

</div>

with the accompanying CSS:

#product {
position: relative;

}
#sale-price {
position: absolute;
z-index: 2;

}
#product-photo {
position: absolute;
z-index: 1;

}

The rendered markup would place the element #sale-price with the higher z-index
value on top of the element #product-photo, if the two were positioned to overlap one
another.

However, take note that relativity comes into play so that stacking order is relevant only to
child elements within a parent element. In the previous example, the parent element
#product and its child elements (#product-photo, #sale-price) would be relative only to
each other. They would be subject to stacking order for the entire page if z-index were
used in other parent elements.

Confused? Don’t be. We’ll show examples of absolute positioning and z-index in two
latter sections of this case study, and further information is available here:

http://css-discuss.incutio.com/?page=AbsoluteLayouts

www.stopdesign.com/articles/absolute/

Background image techniques
If you were to ask me what single style defines most of my work, the answer would likely
be background images. They can be a powerful ally in enhancing the aesthetics of a site,
and CSS makes it relatively easy to control background tiling and positioning.

While the homepage for Tuscany Luxury Resorts uses nearly 20 background images, we’ll
cover only a few here and allow you to explore the rest on your own:

Dividing the top half of the page into three backgrounds

“Bulletproofing” the h1 background image

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

230

6145_Ch11_CS2 1/11/06 6:08 PM Page 230

Dividing the top in three

The masthead or top half of the page (often referred to as “above the fold”) uses three
images to produce the effect of a single background banner. Were this layout a fixed-
width one, you could use a single background image and be done with it. However, the
width of the Tuscany layout is fluid, and therefore the background needs to be split in
three to accommodate.

This is done using an image at left (woman lying down), an image repeated horizontally
the full width of the page, and an image at right (subtle gradient), as shown in Figure 8.

Figure 8. The three background images used to construct the top half

Accordingly, the markup uses three main div elements to control each background:

<div id="masthead">
<div id="main-image"></div>
...
<div id="side-image"></div>

</div>

Begin by coding the repeated background, which is the easiest of the three. This image is
embedded in #masthead as follows:

#masthead {
background: #FFF url(../img/bg_repeat.gif) repeat-x;
}

Three attributes combine to produce the desired effect:

#FFF isn’t really necessary for visual display, as the image bg_repeat.gif overrides
it. However, it’s included as a safety net, should images be disabled for any reason.
It’s always good practice to include background colors when background images
are used and could potentially render content illegible if images are disabled (e.g.,
black text when the body background is also black).

url(../img/bg_repeat.gif) references the image.

repeat-x tells the image to tile only horizontally across the page and not vertically.

main-image.jpg side-image.jpg

bg_repeat.gif

TUSCANY LUXURY RESORTS

231

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 231

Next, code the images at left and right, but be aware the navigation menu, resort loca-
tions, and date stamp will all need to overlay the background. Thus, to accomplish this vir-
tual layering of content and backgrounds, use absolute positioning and z-index instead of
floats.

First, the side image (the subtle gradient):

#side-image {
position: absolute;
top: 0;
right: 0;
z-index: 1;
width: 289px;
height: 246px;
background: url(../img/side-image.jpg) no-repeat;

}

The image is positioned flush with the top and right side of #masthead using top: 0 and
right: 0, while no-repeat ensures the image won’t tile across the page. The image natu-
rally overlays bg_repeat.gif in #masthead due to the background stacking order.
Additionally, a z-index of 1 ensures this image will stack beneath the image of the woman,
should the browser’s width be narrow enough that the two collide.

Next, the main image (the woman lying down):

#main-image {
position: absolute;
top: 0;
left: 0;
z-index: 2;
width: 566px;
height: 246px;
background: url(../img/main-image.jpg) no-repeat;

}

The image is positioned flush with the top and left side of #masthead and without repeat-
ing, while a z-index of 2 stacks it above the side gradient image.

That’s all there is to it. The three background images, with their individual repeat specifi-
cations and stacking order, combine to produce an elegant, fluid background. And in case
you’re curious, the flourishes in the upper-left and right corners were constructed using
characters from the Nat Vignette One font family, available through MyFonts.com.

“Bulletproofing” a background

The subject of “bulletproofing” a layout is one Dan Cederholm covers at length in his
book, Bulletproof Web Design (New Riders Press, 2005). While I’ve used a variety of his
techniques in developing Tuscany Luxury Resorts, I’ll cover just one briefly here.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

232

6145_Ch11_CS2 1/11/06 6:08 PM Page 232

The headline “Lavish Luxury, Unsurpassed Comfort” contains a repeated background along
the bottom, as Figure 9 shows.

Figure 9. Headline with repeated background along the bottom

Without the background, the headline appears as shown in Figure 10.

Figure 10. Headline without repeated background

The background adds a bit of flair and helps distinguish the headline from the rest of the
body copy. If you were doing this with old-school tables and with a fixed layout, you could
get away with embedding the background as one giant image to fill the entire headline.
But you’re new-school, and you’re going to bulletproof that background.

The crux of bulletproofing is to make an element (div, h>, p, etc.) as flexible as possible so
that it will stand up against any request for resizing and reshaping, no matter how tall the
order.

So, the goal is to make your headline background as flexible as possible to tolerate any
amount of short or long text, and, more importantly, to allow for user-controlled browser
text resizing.

TUSCANY LUXURY RESORTS

233

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 233

For starters, wrap the headline in a div with the selector #title:

<div id="title">
<h2>Lavish Luxury, Unsurpassed Comfort</h2>

</div>

Under most circumstances, you could do away with the wrapper div and accomplish this
technique with only the h2. However, you’ll use another background in the h2 in the next
section and therefore the wrapper div is necessary—that is, at least until the major
browsers fully support CSS 3 with multiple backgrounds for a single element.

Here’s the styling for the #title selector:

#title {
background: url(../img/bg_hmain.gif) repeat-x bottom;

}

The attribute repeat-x instructs the background to repeat horizontally only, while bottom
forces it to repeat along the bottom of the #title element instead of the top, which is the
default setting. And now, if the text inside #title either spans two lines or is resized by the
user, the background holds up and doesn’t interfere with the text, as you can see in Figure 11.

Figure 11. Headline with two lines of text, demonstrating the bulletproofness of the background
image

This particular technique is more simple than most others covered in Cederholm’s book,
but the idea remains the same regardless of complexity: bulletproofing your site isn’t a dif-
ficult task per se, but rather a shift from thinking about coding for fixed/one-size usage to
thinking about coding for variable size usage and resizing.

Image replacement
Image replacement, covered in Chapter 3, is used twice in the Tuscany layout:

The logo

The initial cap in the headline “Lavish Luxury, Unsurpassed Comfort”

The basic technique is the same, but each requires specialized adaptation.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

234

6145_Ch11_CS2 1/11/06 6:08 PM Page 234

Logo image replacement

Three elements are required to code the logo (see Figure 12):

Logo image

Markup

CSS

Figure 12. Tuscany logo image

Because the positioning of the logo is fixed, I’ve saved it as a simple GIF with transparency
and a matte color similar to the section of the photo it overlays (black). I’ve used the
lovely P22 Dearest typeface for the “Tuscany” type and Trajan Pro for “Luxury Resorts.”

Whenever possible, code your logos using h1. This is because the name of the site is almost
always the highest-ranking element in the overall markup structure of a page. Accordingly,
begin as follows:

<h1>Tuscany Luxury Resorts</h1>

Note the text in the logo image is repeated in the h1. Not only is this a backup measure for
those who browse with styles turned off (disabled users, some mobile users), but this typ-
ically helps with search engine rankings as well, as plain text inside an h1 tag is often given
substantial consideration when determining the keyword ranking of a page.

Further, this h1 is somewhat all-encompassing. It houses the logo image as a background,
it positions the logo absolutely on the page with top and left attributes, and it throws the
backup plain text off of the displayable area of the page using text-indent:

h1 {
margin: 0;
position: absolute;
top: 20px;
left: 46px;
z-index: 3;
width: 126px;
height: 87px;
background: url(../img/logo.gif) no-repeat;
text-indent: -9000px;

}

TUSCANY LUXURY RESORTS

235

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 235

The width is the same as that of the logo image, and a z-index of 3 is used to ensure the
logo appears on top of any other elements above the fold. We use the Phark image
replacement method here (and for the rest of the case study) instead of the Gilder/Levin
method or other IR methods due to transparency in the images.

You could stop coding at this point and walk away. However, let’s take things a step further
to accommodate a common usability request. A fair share of web users have come to
expect a site’s logo to be a link back to the homepage. To accomplish this, simply add an
anchor tag to your markup:

<h1>Tuscany Luxury Resorts</h1>

Then, add the following code to your stylesheet:

h1 a {
display: block;
height: 87px;
background: url(../img/logo.gif) no-repeat;

}

Note the height and background image are repeated here. You can now remove the height
from the h1 as duplication isn’t necessary, but the background image needs to be repeated
to avoid the flickering that often occurs in IE when a user mouses over the logo.

Initial cap image replacement

The elements used to code the initial cap in the headline “Lavish Luxury, Unsurpassed
Comfort” (see Figure 13) are similar to that of the logo:

“L” image

Markup

CSS

This headline is second in importance in the overall markup structure, and therefore an h2
tag is used:

<h2>Lavish Luxury, Unsurpassed Comfort</h2>

Figure 13. “L” image,
coded using image
replacement

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

236

6145_Ch11_CS2 1/11/06 6:08 PM Page 236

CS2

TUSCANY LUXURY RESORTS

237

Unlike the logo, you won’t hide the full text, but rather only the first L. Wrapping the L in
a strong tag will do the trick:

<h2>Lavish Luxury, Unsurpassed Comfort</h2>

We’ll look at the strong styling in a moment, but the styling for the h2 looks like this:

#content h2 {
position: relative;
margin: 0 auto;
padding: 25px 0 15px 25px;
width: 85%;
font: normal 2em Georgia, serif;
color: #48546A;
letter-spacing: -1px;
background: url(../img/l.gif) no-repeat 0 .7em;

}

Aside from the typical margin, padding, and width attributes, two key attributes set the
stage for properly displaying the initial cap:

background: url(../img/l.gif) embeds the L image, no-repeat prevents it from
tiling, and 0.7em positions it flush left and 0.7em from the top of the h2 (to approx-
imate the baseline of the plain text).

position: relative allows the strong tag to be positioned absolutely in the next
step.

The styling for the strong tag looks like this:

#content h2 strong {
position: absolute;
left: -9000px;

}

Because the strong element isn’t naturally a block element, you can’t hide the plain-text L
with text-indent (as you did with the logo) without first converting the strong tag to a
block element using display: block. However, if you do so, the remaining plain text will
soft break on a new line. So instead position the plain-text L absolutely, and then throw it
off the page with a left position of –9000px. Problem solved.

Fluid imagery
The premise for this next technique is simple: the layout expands and contracts to accom-
modate browser width; shouldn’t the imagery do the same?

To design for fluid imagery—that is, images that appear to expand and contract as browser
width is resized—you need only to change the way you think about coding the images.

6145_Ch11_CS2 1/11/06 6:08 PM Page 237

Typically, you would insert an image inline using the img element and a fixed width, as
shown in Figure 14.

Figure 14. Traditional image rendering with an
img element

The markup is equally typical:

<img src="../img/hpic_bath.jpg" width="220" height="70"
alt="Image of bath and towel" />

In contrast, when creating fluid imagery, you use a div element with a fluid width and
embed the image as a background. Accordingly, if the div containing the background
image has a fluid width, the image will need to fill the display area regardless of width.
“Stretching” an image results in poor quality, and therefore the image is prepared to be
wider than the dimensions of the div (see Figure 15).

Figure 15. Fluid image rendering with the image as a div background

Essentially, the div “crops” the image and shows only a portion of it. The hidden portions
of the image are revealed as the layout expands.

Coding a fluid image

First, begin with a div and class selector:

<div class="section_pic"></div>

The class selector section_pic will be repeated for each of the three featured images,
with styling as follows:

.section_pic {
float: left;

Full image Image rendered
as div background

Full image Image rendered
with img tag

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

238

6145_Ch11_CS2 1/11/06 6:08 PM Page 238

margin-right: 1.25em;
width: 34%;
height: 70px;
border: 4px solid #EBEBE5;

}

Note the width is specified as a percentage rather than pixels. This allows the div to
expand and contract as the layout does the same. Note also the height of the image won’t
be fluid, so a fixed height of 70px is specified.

An id is then added to each image div:

<div class="section_pic" id="hpic1"></div>

The addition of id=hpic1 allows the image to be included as a background, specific to
each div:

#hpic1 {
background: #E2E2D2 url(../img/hpic_bath.jpg) no-repeat

center center;
}

The image is centered both vertically and horizontally with center center, while no-
repeat prevents the image from tiling regardless of browser width. Speaking of which, be
sure to prepare the image with a width sufficient to cover the maximum width of your lay-
out. As described in the first section of this case study, Tuscany Luxury Resorts will stretch
up to 1200 pixels. Therefore, the images used are 220px in total width, which is plenty suf-
ficient to fill the entire div when the browser is 1200 pixels wide or more.

Lastly, lest we forget disabled users and those who browse without full CSS support (e.g.,
some mobile users), include text that acts as a pseudo-alt description:

<div class="section_pic" id="hpic1">(Image of bath and towel)</div>

We then throw the text off the page by adding text-indent:

.section_pic {
float: left;
margin-right: 1.25em;
width: 34%;
height: 70px;
border: 4px solid #EBEBE5;
text-indent: -9000px;

}

That wasn’t difficult, was it? Again, it’s more a mere shift in thinking, rather than a mastery
of complex CSS techniques.

TUSCANY LUXURY RESORTS

239

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 239

Using a single list item for multiple elements
In previous chapters you learned to use unordered lists whenever possible to code your
navigation menus. However, writing clean code with a navigation menu like that of Tuscany
Luxury Resorts can be a bit of a challenge (see Figure 16).

Figure 16. Navigation menu for Tuscany Luxury Resorts

Note that each navigation item has three elements:

Menu text (Home)

Roman numeral (I)

Dotted leader (....)

If you didn’t care about clean markup, it would probably require less effort to code each
of these elements as columns in a table, or to litter the markup with repeated periods (.)
for the dotted leader. Instead, you’ll wisely use a single li to code all three elements. The
menu text is housed in an anchor (a) tag floated left, the Roman numeral in a span floated
right, and the dotted leader as a repeated background image in the li.

Coding the menu

Begin with a simple unordered list:

<ul id="nav">
Home
Reservations
Amenities
Preferred Guests
Tuscany History
Customer Care
Contact Us

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

240

6145_Ch11_CS2 1/11/06 6:08 PM Page 240

Next, add Roman numerals wrapped in a span tag, and add
 to clear the floats you’ll
add in a moment:

<ul id="nav">
I Home

II Reservations

III Amenities

IV Preferred Guests

V Tuscany History

VI Customer Care

VII Contact Us

This is all of the markup required to generate the menu. All other styling will be controlled
by the CSS. Note that the Roman numeral is placed before the menu text in the markup,
even though it appears after the menu text when rendered by the browser. This is done to
achieve the “table of contents” effect with styles enabled, while considering those brows-
ing with styles disabled.

Now code the CSS. First, remove margin, padding, and list-style:

ul#nav {
margin: 0;
padding: 0;
list-style: none;

}

Then specify styling for each li:

#nav li {
margin: 8px 0;
padding-top: 1px;
font: .6em Georgia, serif;
color: #777;
text-transform: uppercase;
letter-spacing: 1px;
background: url(../img/bg_dotted.gif) repeat-x 0 77% !important;
background-position: 0 61%; /* Hack for Internet Explorer */

}

The background image is a simple dotted pattern repeated horizontally. Note its position
at a vertical height of 77%, a few pixels shy of the bottom of the li. This allows you to hide
the background behind the menu text and Roman numeral, to appear as if the dotted
leader begins before and after each, respectively. Regrettably (and with no surprise), IE
positions the background a bit lower, so we override the first position of 77% with a hack
at 61%.

TUSCANY LUXURY RESORTS

241

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 241

Position the menu text (wrapped in the anchor tag) at the left using a float. Add a white
background, which will 1) hide the dotted background and 2) help with legibility when the
browser width is small such that the navigation menu overlaps the background image of
the woman. Padding is also added to artificially increase the height of the element to cover
the dotted background the entire width of the menu text.

#nav li a {
float: left;
padding: 1px 3px;
background: #FFF;
color: #777;
text-decoration: none;

}

Position the Roman numeral (wrapped in a span) at the right using a float. Also similar to
your styling for the menu text, a white background and padding are needed to hide the
dotted background:

ul#nav li span {
float: right;
padding: 1px 3px;
background: #FFF;

}

Clear the floats for the menu text and Roman numeral using the
 tag added earlier:

ul#nav li br {
clear: both;

}

Finally, add specific selectors to each li to embolden the menu item of the current page.
Here is sample markup for the Home menu item:

<ul id="nav">
<li id="nav-home">I Home

...

The accompanying CSS is formatted as follows, with #home declared earlier in the body
element:

#home #nav-home {
font-weight: bold;

}

(For additional explanation of this technique, see “Highlighting the current page based on
the body class,” in Simon’s More Than Doodles case study.)

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

242

6145_Ch11_CS2 1/11/06 6:08 PM Page 242

Figure 17 shows the final menu as shown in a browser. Figure 18 shows the same menu as
it would appear if styles were disabled for the entire site.

Figure 17. Finished navigation menu

Figure 18. Tuscany Luxury Resorts with styling disabled

And that’s it. Three elements, one li.

TUSCANY LUXURY RESORTS

243

CS2

6145_Ch11_CS2 1/11/06 6:08 PM Page 243

Summary
You’ve now successfully uncovered many of the techniques used to code Tuscany Luxury
Resorts. The site is online at https://tuscany.cssmastery.com/, and the source code is avail-
able for download at www.friendsofed.com. There are plenty more—look under the hood,
dive deeper into the code, and you just might find a few gems.

But the real beauty of what’s demonstrated in this case study perhaps lies in the fact that
the raw XHTML markup is just as solid as the aesthetic design. If all styling is disabled, users
should have no difficulty reading and navigating the site (see Figure 18 in the previous sec-
tion).

Though perhaps not beautiful to the web designer’s eye, raw markup formatted cleanly is
a real treat for screenreaders, mobile devices, and search engine listings. It’s the best of
both worlds—those with vision and full-featured browsers enjoy a rich visual experience,
while those with limited vision or limited devices enjoy uncluttered, raw content.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

244

6145_Ch11_3P 3/29/06 5:20 PM Page 244

INDEX

6145_Ch12_Index 1/11/06 6:09 PM Page 245

A
absolute positioning, 35

aligning elements using, 226–230
background image techniques, 232
description, 35, 82
fixed positioning, 36
in relative container bug, 182
stacking order (z-index), 229–230
Tuscany Luxury Resorts case study, 226–230

active pseudo-class selector
creating rollover with images, 78
styling links, 70

adjacent sibling selector, 14
:after pseudo-class, 41
Alexander, Levin, 65
almost standards mode, 10
alpha transparency, PNG, 58
AlphaImageLoader filter, IE, 61
anchor type selector, 70
anchors, 70
attribute selectors, 14

attribute selector hack, CSS, 160
determining external links, 74
form layout, 123

additions for advanced browsers, 124
IE version support for, 76

auto margins
centering design using, 134

IE in quirks mode, 135

B
background images, 44–46

bulletproofing a background, 232
default browser behavior, 44
gradients, 44
tiling images, 45
transparent custom corners and borders, 203
Tuscany Luxury Resorts case study, 230–234, 241

band pass filters, CSS, 158
Bergevin, Holly, 163
block content, 33
block-level elements, 33

behavior, 77
creating button styled links, 76, 77
IE 5.x on Windows bug, 77

body class
highlighting current page based on, 196–198

body tag
adding class names or id attribute to, 18

bookmarklet
code validation tools, 9

border-collapse property, 116
border-padding property, 116

INDEX

246

borders
table border models, 116
transparent custom corners and, 201–204

bottom property
aligning elements using absolute positioning, 227, 229

Bowman, Douglas, 93
box model, 28–33

background, 10
CSS concepts, 28
IE/Win and, 30
margin collapsing, 31

box model hack, CSS, 163
modified simplified box model hack (MSBMH), 164

boxes
block content, 33
drop-in boxes for columns, 198–199
fixed-width rounded-corner boxes, 47
flexible-width rounded-corner boxes, 49
line boxes, 38
nesting, 34
right-angled corners, 199
rounded-corner boxes, 46–53

branding element
liquid and elastic images, 147

browser modes, 10
almost standards mode, 10
quirks mode, 10
standards mode, 10

browsers
see also bugs
development testing strategy, 172
DOCTYPE switching, 10
elastic layouts, 144–145
elastic-liquid hybrid layout, 146–147
liquid layouts, 142–144

bug hunting, 171–175
creating minimal test case, 174
development testing strategy, 172
fix problem not symptoms, 174
getting help for, 174
identifying rendering mode, 171
isolating problems, 173

BUG keyword, 22
bugs, 168–184

see also errors; hacks
absolute positioning in relative container, 182
browsers not always at fault, 168
buggy browsers, 183
common CSS problems, 168
CSS validator, 168, 169
double-margin float bug, 178
finding

see bug hunting
IE 6 duplicate character bug, 181
IE 6 peek-a-boo bug, 182

6145_Ch12_Index 1/11/06 6:09 PM Page 246

layout problems, 175–177
pace of browser development, 184
quality of documentation, 168
three-pixel text jog bug, 178–181

bulletproofing a background
background image techniques, 232

buttons
creating button styled links, 76
creating rollover effects, 77–79
Pixy-style rollovers, 78
rollovers with images, 78

C
caption element

data tables, 114
applying margins, 117

cascade process, 16
confusing inheritance with, 18

case studies
More Than Doodles, 186–216
Tuscany Luxury Resorts, 218–244

Cederholm, Dan, 52, 149, 232
Çelik, Tantek, 158, 163
cellspacing property, 116
center keyword

positioning images, 45
characters

IE 6 duplicate character bug, 181
check boxes

form layout, 122
multicolumn check boxes, 128

child selector, 14
child selector hack, CSS, 160
Clagnut.com, 57
Clarke, Andy

attribute selector hack, 160
class names

adding to body tag, 18
naming conventions, 6
overuse of, 6
(X)HTML elements, 5

class selectors, 12
fluid imagery, 238

classes
combining classes for targeted actions, 204–206
image classes and exceptions, 207–210

clear class
multicolumn check boxes, 129

clearing, 38–42
floats, 41

code
importance of well-structured (X)HTML, 2
(X)HTML validation, 9

INDEX

247

col element
data tables, 115

applying borders, 117
colgroup element

data tables, 115
collapsed table border model, 116
columns

drop-in boxes for columns, 198–199
floating columns, 193–196

commented backslash hack
IE 5/Mac commented backslash hack, 162

comments, CSS, 21–23
adding structural comments, 21
noting workarounds, 22
removing comments, 23

conditional comment, IE, 61
filters, CSS, 157

containers
Tuscany Luxury Resorts case study, 221

content
Tuscany Luxury Resorts case study, 222

content area
controlling with descendant selectors, 188–193

corners
bitmapped corner mask, 52
drop shadows, 53
fixed-width rounded-corner boxes, 47
flexible-width rounded-corner boxes, 49
fuzzy shadows, 57
mountaintop corners, 52
onion skinned drop shadows, 61
rounded-corner boxes, 46
transparent custom corners and borders, 201–204

CSS (Cascading Style Sheets)
see also stylesheets
background, 3
common CSS problems, 168
filters, 154–166

see also filters, CSS
hacks, 154–166

see also hacks, CSS
using browser specific CSS files, 156

importance of well-structured (X)HTML, 2
positioning schemes, 33
versions, 8

CSS image maps, 96–104
annotated images, 99
flickr-style image maps, 99–104

CSS validator, 168
bugs, 169

current page
highlighting based on body class, 196–198
highlighting in navigation bar, 90

6145_Ch12_Index 1/11/06 6:09 PM Page 247

D
data tables

caption element, 114
col element, 115
colgroup element, 115
styling data tables, 112–119

adding visual interest, 117
data table markup, 115
table border models, 116
table-specific elements, 114

summary attribute, table element, 114
tbody element, 114
tfoot element, 114
thead element, 114

date input
not displaying label for every element, 126

Davidson, Mike, 66
definition lists, 108
degradation

graceful degradation, 61
descendant selectors, 11

controlling content area with, 188–193
display property

type of box generated, 33
display property, label element

multicolumn check boxes, 129
setting to block, 122

display: none
removing unwanted columns, 192

div element, 7
horizontal stretching, 55
overuse of, 7
problems with margin collapsing, 170

DOCTYPE declaration
browser modes, 10
description, 8
validating pages, 9

DOCTYPE switching
validation, 10

document type definition (DTD), 8
documents

applying styles to, 19–21
double-margin float bug, 178
download links

styling links, 75
drop-in boxes for columns, 198–199
drop shadows, 53–63

Clagnut.com, 57
coding for IE 6, 56
floated drop shadows, 214
fuzzy shadows, 57–61
onion skinned drop shadows, 61–63
using relative positioning, 57

INDEX

248

DTD (document type definition), 8
duplicate character bug, IE 6, 181
dynamic pseudo-classes, 13

E
Edwards, Dean, 184
elastic images, 147–149
elastic layouts, 144–145
elastic-liquid hybrid layout, 146, 147
elements

absolute positioning, 35
aligning using absolute positioning, 226–230
block-level elements, 33
CSS properties giving elements layout, 176
displaying with box model, 28
elements with layout sizing, 177
fixed positioning, 36
float model, 37
IDs and class names, 5
inline elements, 33
layout, 175
relative positioning, 34
(X)HTML elements, 4

elements, XHTML
class names, 5
div element, 7
id attribute, 5
list of, 4
selectors, 11–17
span element, 7

em layout
strong element, 125

email links
highlighting, 75

errors
see also bugs
problems with margin collapsing, 170
resolving, 169
specificity problems, 169
typos and syntactical errors, 168

escape characters, 158
hacks and filters, 158, 159

escaped property hack, CSS, 163
exceptions

image classes and exceptions, 207–210
external links, 213

attribute selectors determining, 74
icon for, 73
indicating external links, 73
visited-link styles, 80, 81

6145_Ch12_Index 1/11/06 6:09 PM Page 248

F
Fahrner Image Replacement (FIR), 64
Fahrner, Todd, 64
faux columns, 149–152

faux fixed-width column, 150
faux three-column effect, 150
faux three-column layout, 152
footers, 225
positioning using percentages, 151
Tuscany Luxury Resorts case study, 223

feedback message
form layout, 130

fieldset element
form layout, 119, 121
identifying purpose of, 120
multicolumn check boxes, 128, 129
Opera 7 behavior, 119

filters, CSS, 154–166
see also hacks, CSS
band pass filters, 158
browsers compatibility of, 156
conditional comments, IE, 157
CSS hacks using, 154
filtering separate stylesheets, 156–159
rules and, 154
warning: code invalidation, 155
warning: CSS forward compatibility, 154
warning: relying on parsing bugs, 155

FIR (Fahrner Image Replacement), 64
Firefox

code validation tools, 9
web developer’s toolbar, 171

fixed positioning, 36
fixed-width layouts, 141
fixed-width rounded-corner boxes, 47–51

top and bottom curve graphics, 47
flickr-style image maps, 99–104
float model, 37
float-based layouts, 137–141, 176

three-column floated layout, 140–141
two-column floated layout, 137–139

floated drop shadows, 214
casting shadows, 214
floating images, 215

floating
clearing and, 39
clearing floats, 41
creating static floating elements, 36
CSS concepts, 28
double-margin float bug, 178
extraneous markup, 41
floating columns, 193–196

INDEX

249

horizontal navigation bar, 91, 94
floating anchors, 93

line boxes and clearing, 38
moving floating boxes, 37
multicolumn check boxes, 129
positioning, 37–42
radio buttons, 123

float: none
image classes and exceptions, 208

fluid imagery
Tuscany Luxury Resorts case study, 237–239

fluid layout
Tuscany Luxury Resorts case study, 219–226

resolving fluid layout issues, 225
fluid properties

Tuscany Luxury Resorts case study, 224
footers

tfoot element, 114
Tuscany Luxury Resorts case study, 225

for attribute
label element, 120

form layout, 119–131
additions for advanced browsers, 124
attribute selectors, 123

additions for advanced browsers, 124
basic layout, 120
check boxes, 122

multicolumn check boxes, 128
describing elements on form, 120
emphasizing field, 125
feedback message, 130
fieldset element, 119
form elements, 119, 120
form labels, 120
grouping related blocks of information, 119
horizontal form alignment, 125
input element, 123
label element, 120
legend element, 120
radio buttons, 122
required fields, 125
strong element, 125
textarea element, 122

fuzzy shadows, 57–61

G
Gilder, Tom, 65
Gilder/Levin method, 65
graceful degradation, 61
gradients

background images, 44

6145_Ch12_Index 1/11/06 6:09 PM Page 249

H
hacks, CSS, 154–166

see also bugs; filters, CSS
attribute selector hack, 160
band pass filters, 158
box model hack, 163, 164
child selector hack, 160
escaped property hack, 163
Holly hack, 163
IE 5/Mac commented backslash hack, 162
!important hack, 164
layout concept, 175
Owen hack, 165
star HTML hack, 162
underscore hack, 164
using browser specific CSS files, 156
using CSS filters, 154
using sensibly, 155
warning: code invalidation, 155
warning: CSS forward compatibility, 154

hasLayout function, JavaScript, 176
hasLayout property, 176, 177
headers

distinguishing header from rows, 117
hiding a heading, 118
Tuscany Luxury Resorts case study, 221

help
bug hunting, 174

highlighting
current page based on body class, 196
different link types, 73–76

Holly hack, CSS, 163
horizontal form alignment, 125
horizontal navigation bars

avoiding IE 5.2/Mac problem, 93, 95
creating, 91–93

:hover pseudo-class
creating rollover effects, 77
styling data tables, 118
styling links, 70

hovering
CSS image maps, 96
IE 6, 103
remote rollovers, 104
styling data tables, 118

HTML (Hypertext Markup Language)
see also (X)HTML
star HTML hack, CSS, 162

I
icons

external links, 73

INDEX

250

id attribute
adding to body tag, 18
(X)HTML elements, 5

ID selectors, 12
IE

box model and, 30
IE 5/Mac commented backslash hack, CSS, 162
IE 6 duplicate character bug, 181
IE 6 peek-a-boo bug, 182

IFR (Inman Flash Replacement), 66
image classes and exceptions, 207–210

default images, 207
larger images, 208
owned images, 207

image maps
CSS image maps, 96–104
flickr-style image maps, 99–104

image replacement, 63–67
Fahrner Image Replacement (FIR), 64
Gilder/Levin method, 65
initial cap image replacement, 236
Inman Flash Replacement (IFR), 66
logo image replacement, 235
Phark method, 64
Scalable Inman Flash Replacement (sIFR), 66
Tuscany Luxury Resorts case study, 234–237

images
annotated images, 99
background image techniques, 230–234
background images, 44, 46
border image, 202
box image, 202
floating images, 215
fluid imagery, 237–239
gradients, 44
liquid and elastic images, 147–149
rollovers with images, 78
tiling images, 45
transparent custom corners/borders, 202

import (@import) rule
band pass filters, 158, 159

important (!important)
declaration, 203, 204
hack, CSS, 164
PNG alpha transparency, 59
rules, cascade process, 16

importing, 19, 20
indentation, lists, 86
inheritance

confusing with the cascade, 18
value of using, 19

initial cap image replacement, 236
inline elements, 33
Inman Flash Replacement (IFR), 66

6145_Ch12_Index 1/11/06 6:09 PM Page 250

Inman, Shaun, 66
input element

form layout, 123
name attribute, 120

instant messaging
highlighting nonstandard protocol links, 75

internal links
resetting as relative URLs, 74

J
JavaScript

creating hook for, 200
Johansson, Roger, 51, 201

K
KLUDGE keyword

CSS comments, 22

L
label element

display property, 122
for attribute, 120
form layout, 120, 122

not displaying for every element, 126
labels

form labels, 120
LAHV or LVHA links, 212
layout

browser specific, 176
CSS properties giving elements layout, 176
description, 175
effect of, 176
element sizing, 177
elements having, 175
floated layouts, 176
fluid layout, 219–226
form layout, 119–131

see also form layout
one-column layout, 191
page layout, 134–152

see also page layout
problems, 175–177
removing unwanted columns, 192
three-column layout, 189
Tuscany Luxury Resorts case study, 219–226
two-column layout, 190

left keyword
positioning images, 45

left property
aligning elements using absolute positioning, 227, 228

legend element
form layout, 120, 121

INDEX

251

line boxes, 38–42
inline elements within a line box, 33

line-height attribute
creating button styled links, 77

link pseudo-classes, 13, 70
links

dealing with links, 210–213
download links, 75
external links, 213
LAHV or LVHA, 212
RSS feeds, 76
sidebar links, 210
styling links, 70–83

basic link styling, 70–71
creating button styled links, 76
creating buttons and rollovers, 76–79
creating rollover effects, 77–79
highlighting different link types, 73–76
highlighting email links, 75
highlighting nonstandard protocols, 75
indicating external links, 73
order to apply link styles, 71
Pixy-style rollovers, 78
pseudo-class selectors, 70
rollovers with images, 78
tooltips, 81–83
turning off underline for links, 71
underlines, 71–72
vertical navigation bar, 87
visited-link styles, 80–81

visited links, 210
liquid images, 147–149
liquid layouts, 142–144

IE 5.x on Windows, 142
list-style-image property

list styling, 86
lists

adding custom bullet, 86
definition lists, 108
horizontal navigation bar, 91–93
indentation, 86
list styling, 86
Tuscany Luxury Resorts case study, 240–243
using single list item for multiple elements, 240–243
vertical navigation bar, 87–89

logo image replacement, 235
LVHA or LAHV links, 212

M
maintenance, websites, 24
margin collapsing

box model, 31
problems with, 170

6145_Ch12_Index 1/11/06 6:09 PM Page 251

margins
centering design using auto margins, 134
centering design using positioning/negative margins,

136
double-margin float bug, 178

markup
making meaningful, HTML to CSS, 3

masthead
background image techniques, 231
Tuscany Luxury Resorts case study, 221

max-width property, img element
liquid and elastic images, 148

media (@media) rule
band pass filters, 158

Meyer, Eric, 10
modes

browser modes, 10
identifying rendering mode, 171

More Than Doodles case study, 186–216
combining classes for targeted actions, 204–206
controlling content area with descendant selectors,

188–193
one-column layout, 191
removing unwanted columns, 192
three-column layout, 189
two-column layout, 190
XHTML, 188

dealing with links, 210–213
external links, 213
LAHV or LVHA, 212
sidebar links, 210
visited links, 210

drop-in boxes for columns, 198–199
creating hook for JavaScript, 200
right-angled corner boxes, 199

floated drop shadows, 214
casting shadows, 214
floating images, 215

floating the columns, 193–196
calculations, 194
positioning columns, 195

highlighting current page based on body class, 196–198
homepage illustrated, 187
image classes and exceptions, 207–210

default images, 207
larger images, 208
owned images, 207

naming conventions, 189
transparent custom corners and borders, 201–204

CSS for, 203
positioning images, 202

mountaintop corners, 52
multicolumn check boxes

form layout, 128

INDEX

252

N
name attribute

input element, 120
naming conventions

class names, 6
More Than Doodles case study, 189

navigation
expandable tabbed navigation, 93–95
faux columns, 151
two-column floated layout, 137

IE on Windows, 138
navigation bars

creating dividers between links, 92
highlighting current page in, 90
horizontal navigation bar, 91–93
sliding doors tabbed navigation, 93–95
vertical navigation bar, 87–89

navigation menu
Tuscany Luxury Resorts case study, 240, 243

negative margins
centering design using positioning/negative margins,

136
no-repeat

initial cap image replacement, 237
nth-child selector

styling data tables, 118

O
odd class

styling data tables, 118
onion skinned drop shadows, 61–63
Orchard, Dunstan, 54
overflow property

clearing contained floats, 41
liquid and elastic images, 148

Owen hack, CSS, 165

P
page layout, 134–152

centering design in CSS, 134
using auto margins, 134
using positioning/negative margins, 136

elastic layouts, 144–145
elastic-liquid hybrid layout, 146, 147
faux columns, 149–152
fixed-width layouts, 141
float-based layouts, 137–141

three-column floated layout, 140–141
two-column floated layout, 137–139

liquid and elastic images, 147–149
liquid layouts, 142–144

6145_Ch12_Index 1/11/06 6:09 PM Page 252

pages
development testing strategy, 172
highlighting current page in navigation bar, 90

parsing bugs
warning: filters relying on, 155

Phark method
image replacement, 64

photo sharing services
flickr, 99

pixels
three-pixel text jog bug, 178–181

Pixy-style rollovers, 78
vertical navigation bar, 88
visited-link styles, 80

PNG alpha transparency, 58
AlphaImageLoader filter, IE, 61
attribute selector hack, 160
browser support for, 58, 59
child selector hack, 160
IE 5 forcing PNG transparency, 60
!important hack, 59

position property, wrapper
centering design using positioning/negative margins,

136
positioning, 33–42

absolute positioning, 35
in relative container bug, 182

background images, 45, 46
CSS concepts, 28
fixed positioning, 36
floating, 37–42

floating columns, 195
initial cap image replacement, 237
logo image replacement, 235
relative positioning, 34

positioning models, 33–42
float model, 37
visual formatting model, 33

positive margins
centering design using positioning/negative margins,

136
problems

see errors
progressive enhancement, 61
properties

CSS properties giving elements layout, 176
escaped property hack, CSS, 163

pseudo classes
:after pseudo-class, 41
dynamic pseudo-classes, 13
link pseudo-classes, 13
selectors, 12
styling links, 70

INDEX

253

Q
quirks mode

browser modes, 10
identifying rendering mode, 171

R
radio buttons

floating, 123
form layout, 122

relative positioning, 34, 35
absolute positioning in relative container bug, 182
casting shadows, 215
drop shadows using, 57

remote rollovers, 104–108
IE on Windows workaround, 107

required fields
form layout, 125

right property
aligning elements using absolute positioning, 227, 229

rollovers
annotated images, 99
creating rollover effects, 77–79
CSS image maps, 98
flickr-style image maps, 100, 102
horizontal navigation bar, 93
Pixy-style rollovers, 78
remote rollovers, 104–108
rollovers with images, 78
vertical navigation bar, 87, 89

rounded corner boxes, 46
expanding box horizontally, 49
expanding box vertically, 47
fixed-width rounded-corner boxes, 47–51
flexible-width rounded-corner boxes, 49
mountaintop corners, 52

rounded-corner boxes, 53
RSS feeds

styling links, 76
rules

filters, CSS, 154
!important overriding, 16
specificity of, 16
specificity problems, 169

Rundle, Mike, 64
Rutter, Richard, 57

S
Scalable Inman Flash Replacement (sIFR), 66
secondaryContent element

faux columns, 152

6145_Ch12_Index 1/11/06 6:09 PM Page 253

selectors, 11–17
adjacent sibling selector, 14
applying generic styles, 12
attribute selector, 14
attribute selector hack, 160
child selector, 14
child selector hack, 160
class selectors, 12
descendant selectors, 11

controlling content area with, 188–193
ID selectors, 12
pseudo-class selectors, 12, 70
rule specificity, 16
selector specificity, 16
simple selectors, 11
targeting element by type, 11
targeting element by attribute existence, 14
targeting element by descendant, 11
targeting element children, 14
targeting elements with same parent, 14
type selectors, 11
universal selector, 13

separate table border model, 116
shadows

drop shadows, 53–63
floated drop shadows, 214–215
fuzzy shadows, 57–61

sidebar links, 210
sidebars

Tuscany Luxury Resorts case study, 222
sIFR (Scalable Inman Flash Replacement), 66
simple selectors, 11
sliding doors technique

avoiding IE 5.2/Mac problem, 95
expandable tabbed navigation, 93–95
flexible-width rounded-corner boxes, 50

Snook, Jonathan, 37
sort order problems, 169
span element, 7
specificity

problems, 169
rules, 16
using in stylesheets, 17

stacking order (z-index)
aligning elements using absolute positioning, 229–230

standards compliant browsers
development testing strategy, 172

standards mode
almost standards mode, 10
browser modes, 10
identifying rendering mode, 171

, Petr, 79
star HTML hack, CSS, 162
Stanícek

INDEX

254

strong element
aligning elements using absolute positioning, 228, 229
em layout, 125
form layout, 125
initial cap image replacement, 237

style guides, 23
styled lists

illustrated with custom bullets, 87
styled vertical navigation bar, 87
styles

applying styles to documents, 19–21
specificity and, 17
style guides, 23

stylesheets
see also CSS
adding structural comments, 21
applying styles to documents, 19–21
comments in CSS, 21–23
filtering separate stylesheets, 156–159
importing, 19
planning/organizing/maintaining, 19–25
removing comments, 23

styling
list styling, 86

styling data tables, 112–119
styling forms

form layout, 119–131
styling links, 70–83

see also under links
vertical navigation bar, 87

summary attribute, table element
data tables, 114

T
table border models

styling data tables, 116
tables

styling data tables, 112–119
tbody element

data tables, 114
testing

see also bug hunting
creating minimal test case, 174
development testing strategy, 172
pace of browser development, 184

text
three-pixel text jog bug, 178–181

text-align property, 135
text-decoration property, 71
textarea element, form layout, 122
tfoot element, data tables, 114
thead element, data tables, 114, 117
three-column floated layout, 140–141

6145_Ch12_Index 1/11/06 6:09 PM Page 254

three-pixel text jog bug, 178–181
tiling images, 45
TODO keyword, CSS, 22
toolbars

Firefox web developer’s toolbar, 172
Web Developers Toolbar, 9

tooltips
IE 5.x on Windows, 83
tooltips on links, 81–83

top property
aligning elements using absolute positioning, 227, 228

transparent custom corners and borders, 201–204
TRICKY keyword, CSS, 22
Tuscany Luxury Resorts case study, 218–244

absolute positioning, 226–230
background image techniques, 230–234
body and container, 221
content and sidebars, 222
fluid imagery, 237–239
fluid properties, 224
footers, 225
image replacement, 234–237
layout, 219–226
masthead/header, 221
navigation menu, 240, 243
styling disabled, 243
using single list item for multiple elements, 240–243
wireframe for, 220

two-column floated layout, 137–139
type selectors, 11

anchor type selector, 70

U
underlines

styling links, 71–72
varying appearance, 71, 72

underscore hack, CSS, 164
universal selector, 13
unordered list

Tuscany Luxury Resorts case study, 240

V
validation

browser modes, 10
code validation tools, 9
CSS validator, 168
DOCTYPE switching, 10
(X)HTML, 9

versions, CSS, 8
vertical navigation bars, 87–89
visited links, 210
:visited pseudo-class selector, 70

INDEX

255

visited-link styles, 80–81
Pixy rollover method, 80

visual formatting model, 33

W
W3C validator

(X)HTML validation, 9
web (WWW)

development HTML to CSS, 3
Web Developers Toolbar

code validation tools, 9
websites

maintenance, 24
style guides, 23

width
elements with layout sizing, 177

X
(X)HTML

cascade process, 16
class names, 5
description of term, 2
div element, 7
DOCTYPE switching, 10
elements, 4
id attribute, 5
importance of well-structured (X)HTML, 2
importing to (X)HTML document, 20
selectors, 11–17
span element, 7
specificity, 16
usage of terms XHTML and (X)HTML, 2
validation, 9

Z
z-index property

aligning elements using absolute positioning, 229–230
background image techniques, 232

6145_Ch12_Index 1/11/06 6:09 PM Page 255

